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ABSTRACT 

The radar problem is generalized to wideband signals and receivers. 

This generalization necessitates consideration of a wideband ambiguity 

function and of distributed targets.   System design methods, using newly- 

discovered properties of the wideband ambiguity function, the trajectory 

diagram, and computerized clutter suppression techniques, are established. 

The application of these methods, combined with distributed target and accel- 

erating target considerations, reveals signals that are optimally tolerant to 

doppler, acceleration, and distributed target effects.   These signals are 

compared with those used by several species of bats. 
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"One walks step by step into the darkness.   The motion itself is the only 

truth. " 

'We set out from a dark point, we proceed toward another dark point- 

honest, clean, good—and are consoled. " 

Nikos Kazantzakis, in a letter to his first wife 

"He can see in the dark—no small power this, in a world which is one-half 

shut from the light. " 

Bram Stoker, Dracula 



CHAPTER I 

INTRODUCTION 

1.1 General Statement of the Problem. 

This dissertation considers a fundamental question of radar or active 

sonar system design: 

For a given environment and system constraints, what is the best 

signal-filter pair to use in order to gain information about an objeci, via its 

echo? 

It will be worthwhile to examine the meaning of this question in 

some detail. 

The "environment" refers to the channel through which the signal 

must propagate and to all possible spurious echoes that can occur when the 

target is surrounded by wave-reflecting "clutter" or is located in a 

reverberation-prone setting. 

"System constraints" are the limitations inherent in any physical 

system.   An example is found in bats; by virtue of finite lung capacity, bat 

waveforms are subject to a constraint on signal energy.   Other examples might 

be maximum power, mean square bandwidth, and system noise level. 

The word "best" can be translated into many mathematical measures 

of "goodness" such as minimum n ean square error, maximum signal to inter- 

ference ratio, or maximum probability of detection for a given false alarm 

probability. 

I 



The signal is a transmission used to induce echoes.   The filter is a 

system designed to receive these echoes and to process them in such a way 

as to extract information descriptive of a target (including its presence or 

absence).   A "signal-filter pair" (as opposed to a signal or filter taken alone) 

is considered because of the inherent dependence of the receiver upon the 

signal which it is designed to process.   This is why the discipline of radar 

signal design might justly be called "radar system design". 

"Information" not only includes the inevitable question about the 

presence or absence of the target (detection), but may also include acquisi- 

tion of knowledge about the shape or number of targets present (range reso- 

lution), their speeds (velocity resolution) and even higher time derivatives of 

range (acceleration, etc.). 

Finally the "object" or target is an important part of any problem 

specification.   The cross-sectional area of an object determines what frequen- 

cies are needed in order to receive a strong return (above the Rayleigh scatter- 

ing region).   The depth or range-extent of an object determines whether it can 

be treated as a point target (negligible thickness in range) or whether it must 

be treated as a distributed target.   Finally, if the target is indeed distributed 

in range, one must consider the dependence of reflected energy and power 

upon the transmitted waveform. 

The fundamental question, although simply phrased, is thus seen to 

contain many nuances and complications.   The various complications and their 

effects on the problem will be the major topics of discussion. 



1. 2      The Correlation Process. 

It has been demonstrated   1,2    that a correlation process is a sufficient 

statistic for the detection of a signal in additive white Gaussian noise.   Thus, 

if a detector correlates all received signals with the waveform that was trans- 

mitted (or a hypothetical version of the echo), the result of this correlation can 

be used as the basis for a decision concerning the presence or absence of the 

target (likelihood ratio test). 

If the transmitted waveform is u(t) and the received waveform is r(t), 

then the correlation between the two signals is 

j     u(t)r*(t)dt (1.1) 

where the asterisk indicates complex conjugation.   It is assumed throughout 

this dissertation that the filter used to receive radar-sonar echoes performs a 

correlation operation. 

1.3      The Wideband Assumption and the Waveform Design Problem. 

In contrast to much past radar research, the signals used in this thesis 

are not necessarily confined to a small band of frequencies around a large car- 

rier frequency.   That is, signals are not narrowbanded per se.   This depar- 

ture from previous work is motivated by the recent development of wideband 

radar and sonar systems. 

An immediate consequence of the wideband assumption is that the 

effect of target velocity can no longer be approximated by a simple transla- 

tion or "shift" in frequency.   The doppler effect is, in reality, a compression 



(or stretching) of the signal, mathematically described by a scale factor in 

time or frequency.   This more general model of the received signal r(t) 

results in a version of Equation (1.1) that is different from the correlation 

of narrowband waveforms using a " doppler shift" assumption. 

The new version of Equation (1.1) for constant velocity point targets 

is known as the wideband ambiguity function.   It is a function of two variables, 

range and velocity, and is a mathematical description of the behavior of a 

radar-sonar system for a particular signal-filter pair.   Specifically, the 

ambiguity function describes the reaction of a correlation processor to all 

possible delayed and doppler compressed versions of the transmitted signal. 

It therefore determines the ability of a radar system to unambiguously mea- 

sure range and velocity of a given target, to recognize a time-scaled version 

of the transmitted signal, to resolve targets on the basis of their differing 

ranges and/or velocities, and to distinguish a target within a cluttered 

environment. 

If the ambiguity function if indeed descriptive of the above system 

capabilities, its characteristics should be studied.   The relations between 

these characteristics and signal ppri.meters (such as various time-spectral 

moments) are particularly imporu>vi.   Properties of the wideband ambiguity 

function are therefore investigated in Chapter III. 

The analysis in Chapter III is first concerned with a Taylor series 

expansion of the wideband function about the origin of the range-velocity 

plane.   This expansion reveals origin properties that are particularly relevant 

i: 
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to discussions of signal resolving capability.   A comparison of wideband origin 

properties with their narrowband counterparts helps to illustrate the nature of 

the narrowband assumption.   The relation between wideband and narrowband 

ambiguity functions is then made even more explicit by the derivation of an 

integral transformation between them.   Volume properties are studied.   The 

effect upon the wideband function of certain fundamental operations on the 

signal (e. g., time scaling, differentiation) are investigated.   The behavior of 

the function along certain curves on the range-velocity plane is written in 

terms of autocorrelation functions.   Symmetry and separability properties 

are discussed.   Finally, the consequences of narrowbandedness (i.e. , ambig- 

uity function dependence upon the ratio of signal bandwidth to carrier frequency) 

are examined from a wideband viewpoint. 

All of the above properties are investigated in Chapter IE; not all of 

them are used in the sequel, but they are included for completeness.   The 

reader may therefore wish to skip Chapter III on first perusal, since subse- 

quent chapters refer back to previous results as they are utilized. 

It is easy to casually observe that radar system capabilities depend 

upon the ambiguity function; it is more difficult to mathematically define the 

desired capabilities in such a way as to derive an optimal signal-filter pair. 

It is therefore important to demonstrate how ambiguity function character- 

ization can be used to derive signal-filter functions that satisfy a particular 

need. Such a demonstration is given in Chapter IV, where the desired pro- 

perty is designated to be doppler tolerance.   A doppler tolerant signal is 

I 
I 
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defined as one which, when correlated with a time-scaled (energy normalized) 

version of itself, produces a maximum correlator response which is nearly 

as large as that obtained by autocorrelation. 

As already indicated in Section 1.1, constant velocity point target;-. 

alone in space do not exemplify most practical radar-sonar problems.   The 

interaction of a signal with accelerating targets, distributed targets, and 

reverberatory (or cluttered) environments must be considered.   These prob- 

lems are investigated in Chapters V and VI.   In Chapter VI, optimal signal- 

filter pairs are again derived, this time using a computer algorithm for 

clutter suppression (with wideband waveforms). 

A useful description of signal-target interaction is found in Altar's 

trajectory diagram.   These diagrams are applicable not only to modelling 

echoes from point targets with nonlinear trajectories; they are also descrip- 

tive of general time-varying-delay effects, and can be used to depict the 

echoes of certain distributed targets (viz. , those that can be represented as 

arrays of point targets).   Each of these applications is investigated in its 

appropriate context. 

i; 

i 

i 
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CHAPTER II 

CONSTANT VELOCITY POINT TARGET: 
MODEIS OF THE RETURNED SIGNAL AND CORRESPONDING 

VERSIONS OF THE AMBIGUITY FUNCTION 

In order to utilize the sufficient statistic (1.1) one must have an 

expression for r(t), the received signal, in terms of the transmitted wave- 

form u(t).   In general, r(t) will depend not only upon u(t) but also upon the 

environment, the shape of the target, and how the target is moving.   In this 

chapter exceedingly simple assumptions are made concerning these echo- 

determining factors. 

Assume first that the environment is free of clutter (spurious reflec- 

tions) and that the channel contributes no signal distortions other than addi- 

tive white Gaussian noise.   Secondly, assume that the object is a point target. 

The point target assumption insures that a perfect replica of the transmitted 

signal would be reflected from the object if it were held motionless.   This 

implies not only negligible thickness in range but also a large reflecting area 

(relative to maximum signal wavelength) so that reflectivity is not frequency 

dependent.   Finally, the point target is assumed to be moving at a constant 

velocity (or not moving at all). 

The situation described by the above assumptions is admittedly over- 

simplified, but it provides a basis for the consideration of more complicated 

problems that will be discussed later. 



2.1       The Narrowband (Woodward) Model. 

In addition to the assumptions already set forth, P. M. Woodward   1 i 

also assumed that the transmitted signal was narrowbanded.   That is, prac- 

tically all of the signal energy is assumed to be contained in a narrow range 

of frequencies distributed around the carrier frequency.   The carrier fre- 

quency (defined here as the centroid of the analytic signal's power spectral 

density function) is many times greater than the width of the frequency band 

within which almost all the signal's energy is to be found. 

Under these conditions, the echo has the form: 

r(t) = u(t + T) exp H (/> t) (2.1) 

where    T = negative of time delay 

and        </> = - (2 w v)/v = frequency "shift" caused by the doppler effect. 

The narrowband idea is so prevalent in introductory physics that one usually 

hears the effect of target velocity described as a " doppler shift". 

In the foregoing definitions, CJ   is carrier frequency in radians, v is 

speed of signal propagation and v is radial component of target velocity 

(v = -R), taken to be positive for motion toward the receiver and negative 

away from it. 

Almost all radar signal design has been concerned with the narrowband 

model until quite recently.   As a result, a great many properties are known for 

■ 

1 

I 
; 

i 

the corresponding correlation response (or ambiguity function): 
00 

^u ^ ^ "   / «(*) u* (* + T) ei ^ *• (2- 2) 



Many of these properties have been summarized in a recent book by C. E. Cook 

and M. Bernfeld I 4   .   Although a discussion of ambiguity function properties 

should be relegated to the next chapter, one rather important characteristic 

will be mentioned here for motivation purposes:  The ability of a signal to re- 

solve between two point targets with slightly different ranges and/or velocities 

is dependent upon the signal's time-bandwidth product.   In particular, accu- 

rate range resolution is associated with large bandwidth.   One therefore 

expects the designer of sophisticated high-resolution radar signals to become 

dissatisfied with the narrowband assumption as available system bandwidth 

increases.   At the same time, sonar signals must violate the narrowband 

assumption quite often, since the carrier frequencies involved are on the 

+4 +8 
order of 10     to 10     lower than those used for radar.   More will be said 

about this in Chapter III. 

2.2 The Wideband (Kelly-Wishner) Model. 

A 1965 paper by E. J. Kelly and R. P. Wishner [5 I has led to a 

generally accepted version of the ambiguity function for wideband signals. 

For uniform-velocity point targets the Kelly-Wishner argument may be 

phrased as follows: 

The returned signal is v(t) * u(t - T(t)) before energy normalization. 

Consider the differential part of signal (or the "photon") that returns at 

I 
I 
I 
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time t - T(t); this bit of signal must have been reflected from the target at 

time t - T(t)/2,   But the range of the target at the time of reflection is 

vT(t)/2, by definition.   That is, 
I 

Range of target at time of reflection 

= R(t - T(t)/2) 

= VT(t)/2 (2. 3) 

Expanding T(t) in Taylor series about some reception time t   and 

expanding R(t) about the corresponding reflection time t0/2 gives 

T(t) » to+C(t-to) (2.4a) 

R(t) « R(to/2) - v(t - to/2) (2. 4b) 

where the higher order terms in the expansion are zero by the assumption 

of uniform target velocity.   Notice that 

T(to) - to ;    T(to) = C ;    R(t0/2) = -v . (2. 5) 

Substituting (2. 5) into (2. 3) yields vt /2 = R(t /2). 

Differentiating (2.3) with respect to t: 

VT(t)/2 - (1 - T(t)/2)R(t - T(t)/2)  . (2. 6) 

Evaluating (2. 6) at t = t   by using (2. 5): 

(C/2)(v - v) = -v ;    C = (-2v)/(v - v) . (2. 7) 



i 
1 

t - T(t) = t - t   - C(t - t ) = (1 - C) (t - t ). (2.8) I o o o 

s 

I 
! 

: 

i 
I 
i 
i 

Notice that 

so that 

r(t)    =  u(t-T(t)) 

=  uC(l-C)(t-t )] 

v + v =  u[^   .    (t-t)] 
v - V o J 

-   u\ß(t -t ) ]    . (2.9) 

Here s, which will be called the "doppler stretch (or compression) factor," 

equals (1 +ß)/(l ~ ß), where ß = v/v. 

Since the derivation of the correlat ion process is based upon the 

assumption that all signals are normalized to some energy, one must multiply 

u,st, by the factors^ 

/2 /*     1/2 2 
lu(t) I dt=       /I8     u(st) I dt- (2-10) 

-00 -a. 

The resulting ambiguity function is then: 

i; 
00 

Xlu) ^ S) = sl/2 J   U(t) U* ^ + T) ] dt- (2.11) 

2.3 Description of the Returned Signal Obtained from Altar 's 
Trajectory Diagrams. 

In Chapter 11 of his book, Rihaczek [6 ] introduces the Altar trajec- 

tory diagram* as a useful concept for qualitative visualization of the interaction 

between signal and point target.   It will be shown, however, that the trajectory 
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. 

diagram can be used to obtain quantitative results as well.   This idea will be 

further discussed in Chapter IV.   For now, the trajectory diagram is intro- 

duced as a graphical method to derive the doppler stretch factor, s. 

The trajectory diagram of a point target is a plot of target range 

(in seconds) versus measured time lapse between transmitted and received 

signals.   If range as a function of time is written R(t), then the trajectory of 

the target is traced out on the graph of R(t)/v versus t, as shown in Figure 2.1 

for a constant velocity target. 

TARGET TRAJECTORY 

2R(t )/v 

Figure 2.1.      Trajectory Diagram for a Single "Photon". 

I. 
I 
I 
I 
I 

*   The author has tried to obtain Altar 's original paper, but at the time of 
his inquiry it was still classified "Confidential." 
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With reference to Figure 2.1, consider a "photon" of energy 

radiated toward the target at t= 0.   The time taken for this photon to reach 

the target is R(t )/v , ao that the reflected photon is received after a time 

2R(t )/v .   Here, t   is the instant at which the photon is reflected.   Thus 
o o 

t  = R(t )/v .   The "path" of the photon on the trajectory plot may therefore be 

represented as the legs of a 45   right triangle with apex at the trajectory, as 

shown by the construction lines in Figure 2.1. 

The trajectory diagram of Figure 2.1 can be used to show that the 

doppler stretch factor is (1 +/3)/(l -ß), where ß = v/v . The argument is as 

follows. 

Consider two photons transmitted at t = 0 and t = t , respectively. 

The construction lines associated with these two photons are shown on the 

trajectory diagram of Figure 2.2. 

Figure 2. 2.      Trajectory Diagram for Two "Photons". 
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If t   = st  , then what is s ?  To answer this question, draw a more 

detailed picture of the trajectory (Figure 2.3) with a horizontal line through 

the point A on Figure 2.2. 

Figure 2.3.      Trajectory Diagram Determination of the Doppler Factor, s. 

i 

i 

From the trajectory diagram and the 45   construction lines, it is 

evident that 6*= 45   and C« 90 , where 6 and c are angles as shown in Figure 

2.3.   Furthermore, the slope of the trajectory = -R/v = v/v= /3 = tan a . 

Since the sum of the interior angles of a triangle must be 180 , it follows 

that A = 90° - a .   But 0 + 9 = 180  , so 0 = 90   + a .   From this it follows 

that y = 180   -6-0= 45   -a.   Since x is one leg of a 45   right triangle with 

1/2 1/2 
hypotenuse t , it must be that x = t /2      .   Similarly, y = t /2      .   But x/y 

■S M x 

O-l , / 
= tan y ; tan(45   - tan    ß ) = x/y = t /t   .   Now 

tan(A+B) = (tan A + tan B)/(l - tan A • tan B) 

so that 

s ■ l/tan(450 - tan"  /3) = (1 + /3)/(l - 3) . 
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[ 

I 
I 

Trajectory diagrams yield a description of the reflected waveform 

in terms of easily recognized attributes of the signal.   Examples of easily recog- 

nized attributes are the signal's zero crossings (real zeros), its maxima and 

minima (zero crossings of its first derivative), etc.   Figure 2.4 illustrates a 

trajectory diagram derivation of reflected real zero locations, given the trans- 

mitted signal and the target trajectory. 

ZERO LOCATIONS OF 
TRANSMITTED SIGNAL REFLECTED WAVEFORM 

Figure 2.4.      Trajectory Diagram for an Arbitrary Signal. 

2.4 Another Version of the Ambiguity Function. 

There is one model of the received signal that has not yet been 

mentioned.   This model leads to a wideband ambiguity function that has often 

appeared in the literature [7,8,9].   It conceives of the energy-normalized 

echo as 
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1/2 
r(t)= s     u(8t -t ) (2.12) 

where t   corresponds to the delay of the first transmitted photon.   Then 

] 

I 

I 
no 

x(uu(T,S)=sl/2   J    "(t) u* (st + T) dt   . (2.13) 
_ 00 

I 

I 
! 

: 

i 
! 

The three versions of the ambiguity function will be compared and 

discussed in future chapters.   A table summarizing the above definitions is to 

be found in Section 3.1. 



i 
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III. Properties and Interrelationships of the Various 

Versions of the Ambiguity Function 

The constant velocity point target ambiguity function is in 

fact a correlation of hypothetical and actual target returns. The 

hypotheses are in this case limited to range and target velocity. 

If a given mismatch between guessed and actual parameters results in 

a small correlator response (compared with the response to a correct 

guess), then the system will be sensitive to such an error and will 

be capable of resolving between point targets whose ranges and 

velocities differ by the given amount. On the other hand, if the 

mismatch results in a correlator response that is nearly as large 

as that obtained for a correct guess, the system will be incapable 

of determining whether the parameter hypotheses were indeed correct. 

Even so, a large correlator response to a poor guess will at least 

inform the radar of a target's presence. 

To always detect a target (regardless of its range and velocity) 

one must use a whole set of correlators such that at least one 

correlator has a large response (exceeding a threshold that is set 

in accordance with a given false alarm probability) for each point 

on the remge-velocity plane. 

* If the correlators are realized as matched filters, then a con- 
continuous or running hypothesis on time delay is automatically 
implemented. For this case, at least one matched filter should 

I have a large response (exceeding threshold) for every possible 
target velocity. 

17 
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I 
I 

An excellent resolving signal (with what is visualized as a "thumb- 

tack" ambiguity function, i.e., with a small correlator response 

to all bad guesses) will therefore require many correlators for 

foolproof target detection. The price of resolution capability is 

thus paid in system complexity. 

The above considerations are introduced in order to illustrate 

the dependence of radar-sonar system capability upon ambiguity 

function characteristics. In order to intelligently design a radar 

system that uses correlation processing, it is necessary to deter- 

mine the behavior of the ambiguity function in terms of hypothetical 

and actual target parameters. This behavior, in turn, is generally 

dependent upon the signal waveform. 

The purpose of this chapter i^, to amass knowledge about the 

ambiguity function and about any signal characteristics that can 

alter the behavior of this function in some straightforward fashion. 

The chapter is organized as follows: 

After finding expressions for (T, S) in terms of hypothetical 

and actual target parameters, the behavior of the ambiguity function, 

in the neighborhood of an accurate hypothesis, is examined via a 

two dimensioned Taylor series. This examination reveals the depen- 

dence of resolution capability upon certain time-spectral moments of 

the signed. Important similetrities between the widebeind emd neirrow- 

band functions are then demonstrated, euid an  integral transformation 

between the two functions is derived. Ambiguity volume is also 

found to depend upon the signal's time-spectrsd moments, particularly 

mean-square time duration sind carrier frequency. Some signal 



19 

." 

i 

transformations are then investigated to reveal their effects upon 

the ambiguity function.    It is demonstrated that, when the ambiguity- 

function is evaluated along certain curves in the  (T,S) plane, it 

can be written as an autocorrelation function.    Separability tests 

are then discussed; such tests are important to determine whether 

a given function (perhaps suggested as an ideal ambiguity function 

for a given situation)  is indeed an ambiguity function.    Finally, the 

dependence of wideband ambiguity function behavior upon the ratio of 

bandwidth to carrier frequency  (and the ratio of timewidth to mean 

time)  is investigated. 

.'•I Hypothesis Testing 

The argument leading to the correlation process  (l.l)  is 

generally applicable to the detection of a known signal u(t) immersed 

in additive white noise: r(t) = u(t) + n(t).    In many radar/sonar 

problems, however, certain parameters of the received signal are 

unknown a priori.    For the simple case of a constant velocity point 

target, the range parameter i and the Doppler factor s are, in 

general, unknown.    The known signal u(t) then actually becomes a 

guessed or hypothesized signal to be correlated with received data 

r(t), and the magnitude of correlator response is indicative of the 

goodness, in the sense of maximum a posteriori estimation, of the 

guess.    If the signal is such that the ambiguity function is negligible 

for a bad guess, then correlation of received data with a bad guess 

will not even indicate the presence of the target. 

I 
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As a result of this uncertainty concerning the echo, it 

behooves the radar system to make many simultaneous guesses about 

target parameters. The signal corresponding to each guess would 

then be correlated with received data. The largest magnitude of 

correlator response would indicate the best guess (assuming that 

there is actually a target present). Such a system not only detects 

the target but also makes maximum a posteriori (MAP) estimates of 

the parameters associated with its trajectory. The system is usually 

implemented as a bank of matched filters in parallel (Figure 3-7 in 

Rihaczek [6]). 

It is possible to have a Isurge-negative correlator output 

if, for example, T is guessed with just a small error and the signal 

is nearly monochromatic. But it is mathematically convenient to 

have a measure which is a positive function of the accuracy of 

parameter estimation. Most of this dissertation will therefore con- 

(i) 2 
cern itself with the quantities |X v 'I , i = 1,2,5, the magnitude- 

squared correlator responses. 

It is easily demonstrated that the correlation of received 

data with a hypothetical version of the echo does not affect the 

general forms of the magnitude-squared ambiguity functions. 

Let s, (or j£ ) and T. be the hypothesized Doppler and time 

delay parameters, respectively. Let sT (or jO and T_ be the actual 

parameters of a constant velocity point target. Then 

lXuu)(Th'TTA^T) r  . >   ^ "^^^ .  ^V1,^ J,u(t+Th)e  
n u (t+TT)e dt 
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whore unlabelled limits of integration are hereafter token to be 

( - », «O •    Changing variables , 

|xJ£W)|2 =   1 /*u(t)u*(t+T)ej'!(t dt|2 

where 

t = ty - K' T =  TT  " Th  * (5'1) 

In the narrowband case, then,T and $ are simply the differences 

between hypothetical and actual parameters. 

Similarly, 

^uuWwV 

Changing variables 

|rs^/2ufsh(t+Th)]5yV[sT(t+TT)]dt! 

IxjfW)!2  =     iB^JuiVulsit+^Wl2 
uu 

where 

s ■ sT/
Sh;        T = ^^T " Th^ ^?•2^ 

For the third version of the ambiguity function: 

I 
I 

The above resvilts are summarized in Table 5«1« 
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5-2 Origin Properties 

5.2.1 Taylor Series Expansion 

As a consequence of equations (5.1 - 5«'+)^ one sees that 

a good guess about target parameters would make s. •< S- (^. •* jlL) 

and T <« 0. It is thus desirable to know the properties of the magni- 

tude-squared ambiguity function near the origin (s = 1 or ^ = 0, 

T = G). Also, the shape of the constant amplitude contours near the 

origin is somewhat indicative of the volume distribution of the central 

lobe of (X| . The shape of these contours is dependent upon certain 

moments of the signal. The radar engineer car  thus approximately 

estimate the effect upon the ambiguity function of a particular 

change in his signal if he knows the behavior of IXl near the origin. 

Consider, then, a two-dimensional Taylor series expansion 

of lxUu (T,S)|
2
 around the point (T,S) = (0,1): 

X(2)(T,s)i2= UU  v ' / ! 
(2)    ,2  ölXuu2)(T's)|2 

' UU  V ' ' ' dT 
(0,1) 

a|xJ2)(T,.)|2 

^-V-^s  
2 Ö2!X (2)

(T,S)|
2 

UU  v ' ' 1 

(0,1) 
ÖTC 

(0,1) 

+ T(S -1) 
Ö2|X (2)(T,S)|2 

' UU   v  ' / ' 

ÖT Ö, S 

(2), ,    .vS cY^X ^;
(T,S) 

, (s-1)   ' uu ^  > ' 

(0,1) 
b»* 

(0,1) 

+ higher order terms (5-5) 
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With    / u(t)u (t)dt H i and X ^;
(T,S) defined as in (2.8), 

-00 

the derivatives on the right side of (5-5) are calculated in 

Apitndlx A* I+' is assumed here that u(t) « a(t)exp(j0(t)) is complex 

and analytic [10,11], i .e. > that a(t) and e(t) satisfy the relation 

a(t)cos0(t) = H{a(t)sin0(t) ) (5-6) 

where HlO denotes Hilbert transformation.    See the discussion 

preceding equation A.6 in Appendix A. 

(2) 2 Application of the Schwarz inequality to    X      ;|    gi 
A» 

ves 

i\^)(T,s)i2<jr|a(t)|2dt.sj|u[s(t+T)]!2c.t= IX^Wf^l  (5.7) 

with equality if and only if 

\ 
u(t) = ks u[s(t+T)l;  (T>S)=(0,1)-     (5-8) 

(2)     2 
Therefore, |X   (T,S) | < 1» with maximum value at the 

origin (0,1). In the immediate neighborhood of the origin a con- 

stant amplitude contour of |X| can then be written in terms of a 

2 
constant 6 : 

X^ (T,S)|2 = 1 - 62    where 62 « 1.       (5-9) 

Some of the following discussion is modelled after a similar 
analysis of the narrowband ambiguity function by C. H. Wilcox [12] 
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I 

i 

1 

|2 The fact that |X| has a maximum at the origin woiold seem 

to imply that the contour (5.9) is usually an ellipse for 6 suf- 

ficiently small. Proof of this conjecture follows. 

5.2.2    Contour Shape Near (T,S) = (0,1) 

Within a very small neighborhood of the origin,, the higher 

order terms of equation (5.5) may be neglected, so that (5.5) and 

(5.9) become identical. Using the fact that the first partial 

derivatives at (0,1) are zero (Appendix A): 

-I 
^2|Y (2)/  v ,2 

„ O  X v / ( T.S ) 2    uu v ' '' 
+ 2T(S-1)- 

(0,1) 

52|X(2)(T,S)|2 1 uu   ' ' ' 

ÖS ÖT 
(0,1) 

I 
I 
i 
I 
I 

If 

+ is-iy 
Ö2|X(2)(T,S)|2 1 uu v ' ' ' 

ha' 
(0,1) 

A" 

^2|Y (2)/ x , d X v (T,S) 1   ' uu v ' ' 

ÖT£ 

, ö2|x(2)(x,s) 1  ' uu  ' 

C<S 

^2|Y (2),       x 
1  ' uu   ' ' 

or ht 

1 - 6^ 

(0,1) 

fo,i) 

(0,1) 

(5.10) 

(5.11a) 

(5.11b) 

(5.11c) 
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then the  constart amplitude contour is described by  the equation 

A2^2 + 2n1(As1)+ Tj2(^ß1)2 =     62 (5.12) 

where As, = s -1. If this is truly the equation of an ellipse, 

then there should exist a rotation of axes: 

cos 0 

-sin 0 

sin 0 

cos 0 £B. 
(5.13) 

such that 

T_ . (As) 
2     V2 

a    b 
il'lb) 

a more familiar form of the equation for an ellipse. 

Writing (x, As) in terms of (T,, £ß,, ß)  in (5.1k)  and 

comparing the resulting equation with (5'12), it 's found that 

I 

■K2    = (cos20/a2)+ (sin20/b2) 

7 = sin 0 cos 0 [ (1/a2) - (l/b2) ] 

n2    --    (sin2fl/a2)+(cos20/b2)   . 

(5.15a) 

(5.15b) 

(5.15c) 

[ 

I 
I 
I 

An illustration of the relation between the quantities in 

equations   (5.15)  is shown in Figure 3.1• 
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Figure 3.1.      Right-Triangle Relationship of Origin Derivatives 
and Tilt of Wideband Uncertainty Ellipse 

The triangle of Figure 5«! is of immediate  importance to the radar 

signal designer, as it illustrates the ways  in which the  angle of 

tilt (with respect to the T-axis) of the wideband ambiguity ellipse 

depends upon the signal» 

2 2 
Equations   (5*15)  can be solved for a    and b    (with the help 

of Figure 5-1): 

-.2  .     2   ,    /C2      2x2  .   i, 2 A   +TJ     + /(A   -T] )    + ky 

-K2 j.    2       /TT2      2v2   .   i, 2 \    + n     - /(A   -T) )    +  H7 

(5.16a) 

(3.16b) 
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Area = Trab =   (J.löc) 
r 

7C 
/   ^2 2 

V    A 1 

For all the quantities in (5.16) to be positive, real, and 

finite, the following inequalities must be true: 

A2 > 0 (3.17») 

n2 > o (3.17b) 

A2 > y2 (5.17c) 

If these inequalities hold true , then the transformation 

(5.15) will give an equation of the form (5*1^)  and the contour 

'Xuu   '2:r 1 " ^ wil1 indeed te elliptical.    In fact, the inequalities 

(5.17) can all be verified by the Schwarz inequality,  although the 

proof of  (5.17c)  requires a special version of it. 

From Appendix A and equations  (5.11): 

A2 = j|u'(t)|2dt -   |/u(t)u*'(t)dt|2 (3.18a) 

n2 - /t2|u'(t)|2dt -  |/tu(t)u*'(t)dt|2 (5.18b) 

7   = jt|u'(t)|2dt - Re|/u'(t)u*(t)dt / tu(t)u*'(t)dtl      (5.18c) 

As remarked in Appendix A, these quantities are the same for both 

lxi2)|2   and  Ix^l2. uu   ' ' uu 

I 
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Proof of  (5'17a) 

For unit energy signals, 

|u'(t)|2dt= /|u'(t)|2dt  r|u(t)|2dt > |  /u(t)u»'(t)dt|2 , 

with equality if and only if 

tt(t) = ku'(t) . (5.19) 

It would appear that an exponential is a counter-example 

to the inequality,  since  a solution to (5'19) is u(t) = t-expdt t) 

where lu   and k- cein be complex, e.g., u(t) = k,exp[ (b +joa )t ]. 

But in order for the exponential to be of finite energy, it must 

have one of the forms: 

or 

v 0(
b +J^H 

u(t) =     ^ 

u(t) =     ^ 
(b+da)0)|t| 

t > 0 

(5.20a) 

t < 0 

(5.20b) 

I 
I 

The first form (5'20a) results  in an undefined (delta function) 

2 
derivative at t = 0, so that A    will also be undefined.    Such a signal 

is inadmissible per se.    For the second form (5.20b), 
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+1, t > 0 

sgn t = {   0, t = 0 

-1, t < 0 . 

But then u(t) ^ ku'(t) for a consistent value of k, so that (3.19) 

is no longer satisfied. 

I 
u'(t) . k1(b + Ju)o)exp((b + jü)o)|t|]'[«gnt] ,   where 

I 

i 

1 
I 

Proof of (5.17b): 

/t2|u'(t)|2dt r|u(t)|2dt > |  / tu(t)u*'(t)dt|2  , 

with equality if and only if 

u(t) = ktu'(t)       or       u(t) - k-t ^  . (5-21) 

Once again, sudden truncation results in undefined moments, so that 

(5.21) must be satisfied for all t. Since there exists no value 
k2 of k? such that k t  has finite energy, (3.21) defines a set of 

inadmissible functions. Thus (3.17b) is verified. 

30 

Proof of (3.17c): 

Given the standard form of the Schwarz inequality: 

J|u(t)|2dtjr Iv(t)|2dt -   | J u(t)v*(t)dtl2 >0, (3.22) 
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one can derive a special version involving more functions by letting 

u(t) = rf(t) + cg(t), where r and c are real scalars.    This procedure 

has been suggested by E. F. Beckenbach and R. Bellman in their book, 

Inequalities  [13].    Then (3.22) becomes 

/ff*dt / w*dt -   / fv»dt / vf*dt 

/ w*dt    / fg*dt +   / gf*dt    -    / fv*dt / vg*dt + rc<     w*dt 

-    / gv*dt  / vf*dt>+ c2     / gg*dt  / w»dt   -   1 gv*dt  / vg*dt 

>    0 
for all r,c. 

(3.23) 

2 2 
Equation (5.23) may be written xr   + 2yrc +  zc    > 0, where x > 0 

and z > 0 by the usual Schwarz inequality.    But  (3.23)  is then a 

special case of Hermitian form  [1^].    Accordingly, the inequality 

2 
always holds provided xz - y    > 0, or 

i |f |2dt  1   |vl2dt -  Ij «V*dt| |g|2<itj' |v|2dt gv*dt 

/   |v|2dt-Re!   h 

-,2 

Re     lfv*dt / vg*dt (3.210 

i 

! 

I 

Letting v(t) = u(t), g(t)  = tu«(t), f(t) = u'(t) (3-25) 

in (3.21+) gives  X
2

T)
2
 > y2, with equality if and only if rf+cg = kv, 

or 
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ru* + ctu* s ku;    u = ^(r + ct) (5.26) 

But  (3'26)  is inadmissible for the same reason that (3*21) was, 

so that the validity of  (5«17c) has been demonstrated. 

It has been shown that the constant-amplitude contours 

(2)   2 of  I* ^    I    near  (0,1) are indeed elliptical in shape, with axes 

determined by equations  (5 «16)  and tilt-of-ellipse determined by 

Figure 3.1, in conjunction with equations  (5«18). 

(?) 2 
3.2.3 Average Curvature of   |xu^    (T,S)|    at the Origin 

If the ambiguity function were expressed in terms of 

polar coordinates   (p,0) with p = 0 at (T,S) = (0,1), then a measure 

of sharpness of the peak at the origin would be the quantity 

I    -mi      l! uu 

V p=0 

averaged over all 0e(O,2jt): 

2n 

2jt 
c^   r^lxi2)(p,e) 

a>p 
do 

p=0 

(5.27) 

(2) 2 C is then the average curvature of   |X v  ' (T,S) |    at  (0,1).    For 

good target resolution in both range and radial velocity,   |C | 

should be as large as possible.    C may be found from earlier results 

by use of the chain rule: 



^2|X(p,e)i2      a2|x(T,s)|2    /d-rf      ^2|X(T,S)|
2   (ds\ 

.V2      '      ^T2       V^ ös2       w 

+ 2 ^2|X(T,S)I2  öT a>s 
dx ds ^p dp 

33 

2     ^2 
f  a|x(T,S)|

2    Ö2T+  ^|x(T,s)r    £s 
ÖPC ^r 

OP 
(5.28) 

where 

T =  p cos 0 and s - 1 =  p sin 0 (^•29) 

Using equations  (5«ll) in conjunction with the results of Appendix 

A and (5-15): 

- 

I 
I 
I 
I 

g>2lx(p^)!2 

*oc 

2      2 2      2 -2>> cos 0 - 2ri sin 9 - 2'ycos 0 sin 0 

p=0 

and 

2  .     2s Id =   (Tf + ^) 

J^lu'Ct)!^- |   /tu(t)u*,(t)dt| 

+   J|u'(t)|2dt-| Ju(t)u*'(t)dtl 

1/r2 + 1/b2. 

(5-50) 

(5.51a) 

(5.51b) 

(5.51c) 
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5«2.4 Comparison of the Origin Properties of Narrowband and 

Wideband Ambiguity Functions on the  (T,^) Plane 

In a small neighborhood about s = 1, 

s -  (l + v/v)/(l-v/v) * l + 2v/v = 1 -2R/v « l-fl/flJ .       (5.52) 

It follows that 

a iY (2)/, v ,2 
ds' uu  v   ' ' ' 

(0,1) 
^rjl^u^^) (0,0) 

v  X?I
X(2)

(T^)|
2 

o d^' uu v   'r/ ' (0,0) 
(5-55) 

^|X
(2)

(T,S)|
2 

-.   2 '  uu       '  ' ' 
OS 

ö2|*i2W)|2 

(o,i)    ac^)' (0,0) 

ai 
2   ^£ 

O     N^'   uu rV 
\i2^^)|2 

(0,0) 

(5.5U) 

: 

The behavior of the wideband and narrowband functions 

near the origin of the T -^ plane may now be compared.    The  com- 

parisons are made in Table  5.2  (next page), where the derivatives 

are written in terms of U(ü)), the Fourier transform of u(t) . 



I 35 

o 
C) 

-p 
cd 

OJ 

o 
to 

•H 

Ä 

o 
II 

f\l 

OJ     r 

so' 

.W 

o 
II o 

o 
OJ 
^, 
•^- •* 
H 

V  H 

S a ^D 

^ s 
X 
so 

^ 
CM 

OJ 

3|30 

^ 
OJ 

^13° 

<s 

OJ 

OJ 

OJ 
/0 

OJ 

^ 

HlCM 

3 

3|: 

OJ 

o 
o 

♦ 

OJ 

3? 3 
~©. 
-o 

X H 
-ü 

OJ 
/o 

a 
I OJ 

H|OJ 

r, 
OJ 

OJ 

3 
OJ 

3 

OJ 

o 
o 

cu 

OJ 

OJ 

OJ 

l|OJ 

-p 
aJ 

(M 

.1 
O 

s 
> 

a 

o 
II o 

Ü 

OJ 

fe 

O 
II 

o 
o 

OJ 
, , 
■~»- •% 
H 

-   3 S 
X 
^D 

<N 

3 

^3 
D 

OJ 

OJ 

OJ 
so 

& 

V. 
OJ 

o 
o 

cvi 
^ 

H|OJ 

3 

\s 
? 

o 
o 

OJ 

OJ 

Jk 
H 

kn 

H|OJ 

I 3 
OJ 

OJ. 

H|^ 

OJ 

T) 
OJ 

3 

tö 

o 
o 

cu 
•-^— 

-3 ^ OJ 
X f 

^0 
OJ 
so 

IIOJ 



I :5(i 

Table 5'2 helps to illustrate the nature of the narrow- 
(2).2 

band assumption.   The   |X     y|    expressions become nearly equal to 

(l)  2 their   |X     ' |'    counterparts only when the signal energy is concen- 

I 

I 

J 
trated within a small band of frequencies around a large carrier 

i' (v- 
2_0 An Integral Transformation Between Wideband and Narrow- 

band Ambiguity Functions 

From the comparison (Table 5'1) of narrowband and wide- 

band ambiguity functions at the origin of the {t,$) plane, one 

sees that an easy treuisformation exists between corresponding 

derivatives.    One may then wonder about the existence of a global 

operation that maps X       into X     '   and vice versa. uu uu 
I 

5.5»1 Symmetrical Forms 

Application of Parseval's theorem to the narrowband 

function (5.2) yields 

XU^
)
(T^) . ^ ju(a))U*(a)+^)e-dü3Td(D . (5.55) 

Letting    m = cu1 - ^/2 : 

J^/2 
^^ "    ^^/u(oD'-^/2)U*(oo' + i1(/2)e-da3,Tda)1. 

(5-56) 

It was pointed out in section 5*1 that the magnitude- 

squared ambiguity function will be used as a measure of correlation. 

( 
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This means that the phase factor exp(jj2(T/2) in equation (5-56) may- 

be neglected, so that an equivalent version of X     'is: 

X^W) - i   ju(ü)-51(/2)U*(cD+5I(/2)e-JcüT dco  . (J.J?) 

(3"37)  is then a symmetrical form of the narrowband ambiguity 

function   [k].    Once again, ^ s-2cüß and ß s v/v, vrtiere v is positive 

toward the receiver. 

The Kelly-Wishner function also has a symmetrical form 

on the   (T,ß) plane:    LetX^^t,?) =  xUu ) (T'S)
 s = 1+ß 

Then, 

1/2 

1-ß 

^."H^)>(t)^H dt. (3o8) 

Let t= t'/d + ß) 

[(l+ß)(l-ß)]1/2 
uu 

i 
+^H (3.39) 

Applying Parseval's theorem: 

i 

i 

I 

;u<f)(T;p) »ÜI^ÜJUMl + ß))u.[o(l -ß)le-'"°<1+P) T doj.    (J.llO) 



38 

I 

; 

i 
i 

i 

Similarly, it can be shown that 

\[%>P) -  (1;f?1 2    [uMl+ß)]U*Kl-ß)]e-daj(l"ß)rda>.   (JA!) 
UU tfJT J 

Equations  (5«i+0-^l)  are symmetrical forms of the wideband ambiguity- 

functions, anedogous to equation (5-57) for the narrowband function. 

5-5-2 Integral Transformations 

Theorem*: 

Integral l>ansformations between wideband and narrowband 

ambiguity functions are as follows: 

(1)        X v   ' uu ̂
)(T,P) .0^! Jj^,.^)^-^^^ 

(5.^5) 

^ 2it[l-(ß/2a))2]1/2 

(5.U) 

Proof; 

Consider the r-integration of the Woodward function 

X
(1

\TV 2PCD) =X
(1)

(T^) uu uu       r 

(T^)-(T,,-2fr0) 

Using equation (5'57): 

*   Although this theorem is original with the author, the type of 
treuisformation involved here was briefly mentioned in a paper by 
E. L. Titlebaum and N. DeClaris  [Ih], 



I 
I /xJ^TVW»' dr' 

-_ ^ /Tu(x+S|^)u•(x-S|2;)e-^V'°', axd,' 

The T-integration results in the function 2n'j(x-u)), so that 

rx^rVaMe^'dT' =   ru(x + ßcü)U*(x-ßü>)B(x-U3)dx 

I 

uMi + ß)]u*Mi -p)] . (5.^5) 

By equation (J'1^), 

^)(T,P) . (i^!/ uWi^jlu-Mi-P^e-J^^ac» 

so that 

x(2)(T,ß) uu       '   ' 
(i - a 

2ir 

1/2 
Xu

(
u
1){T'i-2ea,)eJ'OT' dr' e-j«>(l+P)rto. 

I 
I 
I 
i 

I 

This is the first transformation (J-'O)« 

Similarly, by (5.1+0), 

(2), 
uu  vl-ß/2cü  ?  2a:; 

|l - (ß^)2]1/^ 
= ^   [ufcd-ß/aajMu^bcd+p/aaj)]«'^' dx , 

so that 



-JU 

I 
i 
I 
I 

r   X ^\T7(l-ß/2cD),-ß/2a))        .     , 
l  —ÜH ^ e^ dT,= U(a)-ß/2)U*(cu+ß/2).       (3.U6) 

J [i - (ß/ao)2]1/2 

But, 

^ Ju(cü-ß/2)U»(a.+ ß/2)e-J(0rda)= v^^^ß) . 

Therefore, 

(1)      rrX ,
U
2)
(TV(1 -ß/2aü),-ß/2a))  ....N 

Xu
(
u
1}(T,ß) J -ÜH __ eJcD(T -T)dT'dco , 

UU      JJ 2T:[1-(P/2CD)
2
]
1/2 

which is the second transformation (J.MO- 

These transforms are similar in form to Fourier's integral 

formula [15] for the regeneration of a function by means of a 

double integration (repeated Fourier transform): 

f (t) = ±JJ f (T)e-Ja)(T-t)dT da. .        (5.1+7) 

The difference is that the above Theorem involves kernels that 

are dependent upon CJO as well as T. The only exception to this 

difference occurs when ß E 0: 

X^
2)

(T,0)   -   xj^r.o) , (3.U8) 

an obvious result  . 
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>U Volume Properties 

p,k,l       Woodward's Result for the Narrowband Case 

Woodward  [1] has pointed out that the volume under the 

(l) 2 narrowband function   |X v   '(T,^) I    is constant.    This is easily i uu      ,r/ ' 

shown by writing 

= ^7/Ju(x)u*(x+ T)e^Xu*(y)u(y + T)e"^ydx dy d^ dr . 

(5.^9) 

Since 

^/e-J(y-x)^.d(y-x), (5.50) 

VTJJ)   =J]'|u(x)|2|u(x+T)|2dXdT 

=    1, for unit-energy signeils. (3'5l) 

?.k.2       The Kelly-Wishner Volume Calculation [5]. 

(2) 2 The volume under   |X v   (T,S) ]    on the  T,S plane may be uu 

written; 

^f-   //^W)^*. 
(5.52) I 

- i J     ///      u(t)u*[s(t+T)]U»(a))U(cD/s)eJü)Tdü)dtdTds, 

0      -« 

i 



; 

4iJ 

where use has been made of the identity  (using Parseval's theorem): 

X
UU

)(T
'

S)
 

= -JT72 fuMu»W 
2iTS   ' 

e doü  . 

and 

ru»[s(t + T)]eJ(ürdT = |lf(co/s)e"dü,fc 

Ju(t)e'Jü3tdt = U(Cü) 

(3.55) 

(5.5M 

(5.55) 

so that 

(2)       1     //   |u(aVs)|2    !„/  x|2,    . /* m£\ 
,s    =2ZJJ s |U(a)), dü}ds (5-56) 

0   -e 

We can now make one of two reasonable assumptions: 

(1) u(t) is real, which implies that  |U(<JU) |2 =   |U(-ü)) |2, or 

(2) u(t) is complex with real and imaginary parts a Hilbert pair 

(analytic), which implies that  |u(a)) |    = 0, CD < 0. 

For assumption (2)  with cu = CD'S: 

VT|
2) = ±fj \\Jiü>')\2\v{sa>')\2dsdü>' 

0 0 

0 

lu(^) 

lu(^) 
Ci.1 

nl2 
00 

ij a)'|u(ü)'s)|2ds du)' 

den . (5-57) 

Assumption (l) would, of course, give a similar answer. 
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t 
I 

I 
I 
I 

Kelly and Wishner did not energy normalize the returned 

waveform, so the original Kelly-Wishner ambiguity function lacks 

1/2 (2) the factor of s '     in front of the expression for X     ',    For this r uu 

reason their volume result is somewhat different from the one 

obtainec! above. 

Tf the signal were narrowband, one could evaluate (5'57) 

in the manner indicated by Table J-l, yielding 

V (2) *— . (5.58) r,s   ü)O 
K' ' ' 

Even though the volume of the Woodward function is appar- 

ently constant, the volume of |X v 'I decreases with larger carrier |x(2)|2 1 uu 1 

frequency. This apparent contradiction will be resolved in the 

next section. 

5.^.5  A More Realistic Approach to Narrowband Volume. 

Cursory observation of Woodward's volume theorem indicates 

that the ^-integration is, per se, unrealistic. In Chapter II, 

^ was defined as 

2(X) v 

^--T2-' (5-59) 
v 

To integrate ^ form - « to + « would violate the theory of rela- 

tivity for a radar signal, and would violate the implicit assumption 

that lv| < |v| for sonar. But this objection is eclipsed by further 

problems when one considers the validity of Woodward's model of 

the returned signal. 



i; 
it 
[I 

Let us, for the cake of argument, assume a transmitted 

signal with linear phase: 

u(t) = a(t)exp(ja)ot)   . (3.6o) 

This signal may be wideband or narrowband, depending upon a(t) 

and u) . Using the model of returned signal leading to (2.11): 

r(t) = s1/2u[s(t+'r)] n s1/2a[s(t+T)]-exp{ju)o[s(t+T)l) .  (5-61) 

In the narrowband argument, this retimed signal is assumed to have 

the form: 

r(t) - u(t+T)exp(-j?(t) = a(t+T)exp(ja)o(t+T))exp(-j^t).  (5.62) 

Let us investigate the conditions under which (5.6l)  and  (5'62) are 

equal. 

It was shown in Chapter II that 

s =  (1 +ß)/(l -ß) (5.65) 

where ß = v/v, a relative velocity factor. 

Since ß < 1, 

l/(l-ß) = l+ß+ß2 + ß5+ ... (3.6U) 

so that 
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I 
i 

I 
r 

s = (i + ß+ß2 + ß5+ ...) + (ß+ß2+ß5+ß1++ ...) . (5.65) 

Therefore   (5»61) becomes 

r(t) =   (l + 2ß+2ß2+ ...)1//2 a[(l+2ß+2ß2+ ...)(t+T)] 

expfjcjü (l+2ß+2ß2+ ...)(t+T)]   . (5-66) 

If ß « 1 and cu ß   «1,   (u) ß need not be so small), then 

r(t) = a(t+r)exp[Ja)o(t+r)].exprj2a)oß(t+r)]. (5.67) 

By substituting (5-59) into  (5«62),  the narrowband model becomes 

r(t) = a(t+r)exp(l)cu (t+r))exp(j2a) ßt). (5.68) 

Since the quantity  |x|     is of ultimate importance, phase 

factors that are not time dependent may be neglected.    Thus the 

narrowband model  (5.68)  is nearly identical to the Kelly-Wishner 

echo provided that: 

(1) |ß|  «1 
(5.69) 

(2) cuoß
2 « 1   . 

Observe that neither of the above conditions requires that oo ß « 1. 

In the calculation of narrowband ambiguity volume, even 

those limits commensurate with relativity theory are therefore 
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generally unacceptable (or, at least, unrealistic). Limits that 

take conditions (3.69) into account would be 

— < ß < — ,    where cu » 1. 
(X) Oi     ' o 

o o 

A volume calculated with such limits would generally vary as l/cu , 

as in equation (3«58) for V ^. 

J.k.k Upper Bounds to Wideband Ambiguity Volume 

Theorem; The volume of the wideband ambiguity function JV  I 

2  2  l/2 on the T)  ß plane is less than or equal to 2Jr  (D. /3) ' , where 

2  r 2 2 
D. ■ It |u(t)l dt, the mean-squared time duration. 

(2) Proof:   Let V ft = ambiguity volume on the r, ß plane 

1 00 

-  / / l^2)(^ß)|2^dß (5.70) 
-1 .« 

where    V ^  (r,ß) is given by  (l.ho), so that 

2      1     " 
V^-Ö^ j jJjru[x(l+ß)]U*Tx(l-ß)]U*[y(l+ß)]U[y(l-ß)] 

^    ■00 (3.71) 

e-J[(l+ß)(x-y)r]dxdyd    dß> 

Performing the  T-integration and making use of the relation: 

re-j(l+ß)(x-y)rd7. = ^ 6(x -y) (3-72) 

and then performing the y-integration, one is left with 



i 
I 
I   ■ v$. J a& m* (3.75) 

-l 

| 
I where 

z(ß)   -    J'|urx(i+ß)]|2|u[x(i-ß)|2dx . (3.7U) 

Since Z(ß) = Z(-ß), it follows that, 

j* ßZ(ß)dß = 0. (5.75) 
-1 

[ Applying the Schwarz inequality: 

(l-ß2)l/2Z(ß) < [(l+ß)y,|U[x(l+ß)]|Udx.(l-ß)/,|ü[x(l-ß)l!l,"dxll/2 

= f\Jj((o)\käai  . (3.76) 

Combining (3.73), (3-75), and (3-76): 

1 

v^/^/W!"- (3.77) 

Letting ß = sin 0, dß = cos 9 de; 

1 n/2 

/   d2 1/0 " f    M-    * . (3-78) 

Therefore, 



48 

(2)     i   r Vr,ß   <|/|U(a>)rda) (5-79) 

We now utilize an inequality of B. v. Sz.Nagy  [l6, 17] 

as given in Appendix B.    Invoking the second part of Nagy's    in- 

equality with a=2, b = 2, p = 2, r=2, gives, for a unit energy 

signal: 

/I U(üü) (f) 
dcu < —=—. ■ 2 VK2> 

(1) 
/lU'^l   dop 

1/2 

=   ^)1/2   • (5-80) 

Therefore,    V,.^^ < 2«2{V.2ft)1'2  . QED    . 

It is therefore evident that a signal with small mean 

square time duration will have comparatively small ambiguity volume 

on the r, ß plane. 

By the RMS uncertainty relation (Appendix C): 

; 

D
2
 > IAD 2 . t. — ' (u 

If it is desired to make the volume small, one method would be to 

2 2 
make D.  small. But in order that D.  be small. 

i 

I 
I 
I 

DafE (^)/^|U(a))|2da. 

must be made large • This is conveniently done by shifting U(a)) 
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away from co - 0, i.e., by adding a large carrier frequency.    In 

fact, for the special case wherein u(t)  is Gaussian and narrowbanded, 

D/1 * 1/lto2    and   VT
(2) <i- • -L    . 

This is in excellent agreement with (3.58)• 

Theorem;    If a signal is strictly time limited with duration T 

(u(t)    = 0 for t outside   (-T/2,T/2l) then V  ^ < JT(T •    max        |u(t)(l2. 
2  '

P -T/2<t<r/2 
That is,  the volume upper bound varies as T    times the maximum 

instantaneous signal power. 

Proof:        From (3.79), VT
(^ < |f|U(ü))|  <lcu ' 

For the  strictly time limited signal, 

T/2 T/2 

U(cu) =       f    u(t)e"Jcutdt<     y,|u(t)|dt< max      lu(t) I-T.   (5.81) 

-T/2 ' -T/2 ' -T/2<t<r/2 

i J|u(a))|
Uda)< |max|u(t)|.T|2  • i j'lu(a)) |2doo (3-82) 

so that, for a unit energy signal. 

(2) < 7t[T-max|u(t) I]2 .    QED 
T,ß       t 

To minimize max|u(t) | for a given duration T and constant 
t 

energy, it is evident that the best signal will have constant amplitude 

[ 



J 

j 

i 
1 

1 
I 
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Corollary: The amplitude of the time limited signal (with given 

duration) that minimizes the upper bound (5-Si) is a rectangular 

pulse. 

Although volume on the (T,ß) plane is more meaningful 

than (T,S) plane results in terms of comparisons with narrowband 

properties, the following result for the (T,S) plane will prove 

useful. 

(2)    2 
Theorem: The volume under the |x  (T,S)|'" function in the strip 

(s. >s>Sp) of the T,S plane is less than or equal to 

,, /_ 2/,a/2/ 1/2   1/2* 

Proof:   Using the expression (5.55): 

Xu
(
u
2)(r,s)|2 =.  i^/y'u(x)U;;-(x/s)uny)u(y/s)e-J(x-y)Tdxdy . (5.85) 

(Sn)^ 

Integrating with respect to T and then with respect to y: 

I 
I 
I 
I 
I 
I 

or 

/^S-)!2^-^ /lu (x)|2|U(x/s)|2dx . (5.84) 

-or .00 

Applying the Schwarz inequality: 

5ij/|U(x)|8|H(x/.)|2to<-T^ 
J 2ns  ' 

l\V{x)\kdxJ\\Jix/S)\
kdiX/s) 

1/2 

z&f |U(x)|4dx 
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Using Nagy's  inequality as in (5.B0) 

s, s. 

v(2) JJ lxi2)(r,S)|
2dTdS <  (Pn)^2)1/2   /V1/2 ds 

S2 S2 

= ^C^2)1/2^2-»^2).    QED. (5-85) 

5^'5   Distribution of Volume of the Unsquared Function Above 

and Below the Plane X^f (T,ß) = 0. 

Theorem: If u(t) has no d.c component, then J   J  y  (T,ß)dTdß= 0. 
,  > -1  -00 Ä (2)/   \ 

That is, the volume of X  (T,ß) is equally distributed above and 

" (2) 
below the plane X  ' = 0. uu 

Proof:   From {l.hO)  and (5'72), 

-00 

-10 0 

1 

by changing variables as in (5'78).    Therefore, 

1 

/    /\xu)(r'ß)dTdß   =   l^0)!2   =    0  '    ^D- (5.8?) 
-1    _«> 
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A similar argument shows that narrowband volume is also equally distributed 

above and below the plane ^      =0, provided that U(o) = 0 or u(o) = 0. 

$.^         Bounds on Ambiguity Function Amplitude 

The first part of Sz.-Nagy's inequality can be used to 

find an upper bound on the wideband ambiguity function along a 

constant s profile. 

Theorem: max 
-oo< ^< oo 

X(2)(r,s)|2 

uu       '   ' ' 

'D 
2x1/2-, 1/2 

clT 5s 
(2), * MT,S) uu   x   ^   ' 

lV2 
dT (5.88) 

Proof:        For a=2, p = 2, r = 2, and s  fixed,  the first part of 

Sz.-Nagy's inequality  (Appendix B)  gives* 

«^'(r,.) I <   J |X^)(T,3) |2aT|      IJ ^'(r..) I2dr max (3.89) 

In the proof of Theorem 5 it was shown that 

ri\(
u
2)(T,s)|2dT<2It(Dt

2/5s) ^o^/S (3.9C) 

I 
j 

I 
I 

and this proves the theorem. QED. 

*   where max ■ 
T 

max 
.00 < T <«> 



Corrllary: 

max|X(2)(T,s)|2 

T 

U(cü) | d .0) (CD) I du) 

1/1* 

<."1/2(2w)5/^lDt2)V^y.J^,ü| iiA 
da) (5.91) 

Proof; |iXuu)(T's)|2dT^^T72 flU^)!^» from (5-85) 

fl^Xu(u)(T's)i2dT = 2^p|U(a))|2|U(u)/S)|
2doD 

< -^^^^(a.) |^du) f lu(a)/S) |Ud(u)/s) 

1/2 

•  (5.92) 

I 
I 
I 
I 

Substituting (5.92) and (5.85) into (5.89) gives the first in- 

equality of the corollary. Substituting (5.80) into the first 

inequality gives the second. QED. 

(2)    2 Finally, one can find a lower bound on max|X  y(T,s) | 

for strictly time limited signals. 

(2)    2 Theorem: max |X v '(T.S) I'" >        uu     ' — 

-jRu(T;fi*(ST)dl 

T(s+1) 

where u(t) = 0 for |t| > T/2 

and  R (T) = X(2\T,1). u '   uu  ' ' 
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I 

Proof;        The  theorem is a consequence of the  inequality 

/|X(?)(T,s)|2dT <raaxi^2)(T,s)|2.(T  -O (5.95) 1 uu  v   '  y '        -        '  uu    '  ' '     v  2    Imax 
Tl 

where (T - T. )   is the maximum support in T of the ambiguity 
c X IIIELX 

function. For a strictly time limited signed with duration T, 

Xuu)(T's) =  sl/2ßit)u'\B{t+r)]it 

is the correlation of a signal with duration T and a signal with 

duration T/s. The quantity ST can  therefore have a maximum range 

(2) 
of T + T/s over which X ^ ^ is not identically zero. Then the maxi- uu 

mum support in T is (l/s)(T + T/s) = T(s + l)/s . 

Since |U(a)) |2—— R^T) (5.9^) 

|u(f) I2 
and  1 «-R (ST) (5.95) 

S u 

(2) 
where R (T) = X v (T,1) ■ the autocorrelation function of u(t) and 

U        UU v 7 ' v ' 

"m m" denotes a Fourier transform pair, Parseval's theorem applied 

to (5.810 yields: 

oo 00 

/iXuu)(T's)|2dT    ■      /*VT)Ru(sT)dT • (5-96) 
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i: 

i 
i 

Substituting (3.96) into (3.95) and utilizing the fact that 

(T2-
Tl)B«-

T<' + 1)/"2 (>97) 

gives the required inequality. QED. 

3»6 Some Transfonnations of the Signal and Their Effects on 

the Ambiguity Function 

Theorem: If u(t) =♦• X ^
2
\T,/3) 

then u(t + d) -+  XJ^T-III , ß)  . (3.98) 

Proof:   u(t + d) *-♦ U(c£)exp(jdtü). (3.99) 

Substituting (3-99) into (3.1*0) yields the desired result. 

QED. 

113]: 

A comparable property for X ^  '(T,^) was derived by Siebert 

If UM    =► ^^(T,^) 

then U(a))exp(jdfo2)    =♦    X ^'(T - 2c^,J<)   . (3.100) 

Similar effects are achieved by a linear phase shift of U(Cü), i.e., 

a time delay in u(t), for the wideband function and a quadratic 

phase shift of U(üJ) for the narrowband function. 
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Theorem. If u(t)    -*    \^>ß) 

then    a^uCat)  =# X (2\aT,/3),    a > 0.        (5.101) uu 

Proof; 

a     u(at) =► 2^ I 1/2 172—^ ^   dtD    " 
•/        a a (5.102) 

Changing variables gives the result.    QED. 

Siebert's property for the narrowband function [18]  is: 

If   u(t)    =♦    *w)('t**) 

then a1/2u(at)    =►    X
U^(»T,^/»). (5.105) 

When u(t)  is compressed, the X ^  ''-function compensates 

for compression along the T-axis by expansion along the jii-axis. 

The wideband function does  not have this compensation feature.    This 

helps to explain the volume result (5.80), i.e., the wideband 

function loses volume as the signal is compressed in time. 

Corollary: If u(t)    ==►    xj^ (T,ß) 

I 
i 
[ then a1/2u(at+d)    _»    x^ax-gß , ß) 

I 

(5.1010 

The comparable result for narrowband: 
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IfU(co)    =^    \(
u
l)(^^) 

then a-1/2U(a)/a)eJd(co/a)      =♦    X^\aT-2d^/a^a). (5.105) uu 

Theorem: If u(t)    =►    X ^
2
\T,/?) 

then »C)(t)-.   (.x)",^.)"   51[xu(f)(..3) 
or* 

(5.106) 

where u(n)(t)    -    dn/dtn[u(t)l   . 

:        U
(n)(t) -^    (j^^JCco)   . (5.107) Proof: 

Therefore, 

x        (2)   (t,ß) 

(5.108) 

= "^^/[^: + ß)l^Ml+ß)l[-J-(l^)]^#Kl^)]e-J"(l^)T^ . 

But 00 
Ml+Äln(-^a-Ä]n - a)2n(l-^)n   . 

Therefore, 

x      (2)   (^) 

.   ai£^(1.^)nru;ü)(1+g)lu*[a)(1_/3)>2ne-Jco(l+/3)T ^ >   ^^j 

dx 

- (-l)Vn(l+ß)2V^(1+^T ,      (5.110) 
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so that, 

(2) 
X (n)   in)^^ 

(l+/3)2n 27r h-x2nJ 

kn,l^,n i2"   rY (2), ^ngf) f^ LC^'^l-   ^• ö dT 

The time differentiation property is similar to the cor- 

responding property of the ordinary autocorrelation function, 

| RU(T) =   il/2n)f\V^)\2ei<m dec . (5-111) 

i: 
i. 

Theorem;    If u(t)    =►   \^\^ß) 

However, there seems to be no such simple result for ^he narrow- 

band ambiguity function with ^ ^ 0. 

nA+ßr /    v (2)/ - then //../u(t)dt =♦ (-1)U(J^) I-../ X^{T^)dT 

n 2n—       (5.112) 

Proof:   The proof follows directly from the proof of (5'106) 

by substituting -n for n throughout. QED. 

Again, the X  ' function exhibits no such simple behavior 

for integrated u(t). 
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i 

uu Theorem;       If u(t) =*   X,„ (T,0) 

(2)    T A (2) l-\ ß 
thenu^#u  =♦ PT^ V u.(T'^ * Xu u (T

'^ 
^       2 (l-/f)1/2 W U2U2 

(5.115) 

where u^ * u2    ■ /u1(x)u2*(t-x)dx , (5'111+) 

I 
I. 

so that 

Proof: u^t) *• u2(t)«-*.  U-^UgCco) (5-116) 

I 
so that 

(2) r.   ^xl/2   /• 

VVVV^ = iil^—/UlM1+ß)lU2^1+ß)J 

.l]1*[cD(l-p)]u2*[co(l-^>-Ja>(l+^T dco (5.117) 

j /\^(*>ß\if(-x,ß)dx 

I = ^Jfhh^K* K(i-ß)Je"n(1+P)x 
(2w)' 

-JO)   (l+ß)(T-x) 
•U2La)2(l+ß)lU2*[a)2(l-ß)le      d da^d^dx.     (5.118) 

Using (5.72) and integrating with respect to x and OL; 



60 

; 

I 
I 

I 

i 
i 

(2) A        (2) 

i^K^a+Äiu^^a+ÄiY^a-öju/^a-Ä] 

-.JCüL(1+/3)T 
• e dco. 

(l-^)1/2    - (2) 

i+ß       'V^s'VS 

The narrowband version of the above theorem was derived 

by Siebert, and cein be found in the doctoral dissertation of 

E.  L. Titlebaum   [l9l : 

X (T,^)- X (l\T,fl()i X
(1

\T,«<)   . (3.119) u*v,u*v        'r'       uu K  >r 1     vv  y^tyi ^     'i 

The following two theorems use the type of transformation 

suggested by J.  Speiser   [20].    Speiser's theory is summarized in 

section 5»7' 

Theorem;    If U(üü) =»- X ^2\o,^) 

then for   /3« 1, U (log CD)/CD
1
/

2
     =^ X   '    (0,-2ß). (5.120a) 

uu 

provided u(t) is Analytic.    In other WDrds, if U(a)) = 0 for CJD < 0 

and   0« 1, 



: 

I 
I 

ei 

.    (2) (1) 

Proof; 

U(log CD) (l-/^)1^2    /'u[log cü+ log(l + g) ]U*[log co+ log(l -eh ] 
1/2 27r / ~     '2x1/2 

0 

for   T= 0.    Letting cu'  =  log U3 

U(1^) —► ^ /ü[Cü' + log(l + ß) ]\J*[(B'+ log(l - ß) Ida)'. 

^ (5-122) 

For   p« 1, log(l + ß) % ß    and log(l - p ) * - ß, so that 

2il2t|i _►  l fui^f )u-V-f jd. . x (i)(o,-2ß) «ED. 

Theorem:    If u(t)  =#.   XuU  (0,ß),  then for   p« 1 and u(t)  causal, 

u(log t)/t:L/2=#.x(1\2p,0), (3.123) 

.     (2) (1) 
i-e" Xu(logt)(0^)  %    Xuu(2^' 

s/t 

Proof :        Using equation  (3.39), 

-     (2) / dt XuUogtl(0,ß)* 7 u[log t-log(l + ß)]u*(log t-log(l-ß)^ 

i Jt 0 

I*     /u(t - ß)u*(t+ß)dt =     /u(t)u (t + 2ß)dt 
-oo -oe 

I 
I 

=    Xu
(
u
1)(2ß,0). QED. 
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Theorem:    If ll(a>) «♦    |X^
2
\T,S)|

2 

then U(<ö)exp(jk log en) =♦   \\if\T,B)\2. (3.121+) 

That is, the added phase factor exp(jklog(D) has no effect at all 

on the meignitude-squared wideband ambiguity function. 

Proof: If U(CD) -► U('o)eitp(jk logci)), then 

ifuM U*('ß/S)  e'>T- e^flogco-log(ays)) X^\T,S) —*   T-fWni   __ZiÜ  e'J,lw-  ^J^^'.-'-^v./^j^ 

(5.125) 

But log cn-log(a)/s) = log s.    Therefore, 

x(2)(T,s)^   edkl0gSX(2\T,s) (3.126) 
uu       7 uu   v   '  ' 

so *.'iat   |X(2
\T,S)I

2
 --►   !X

(2
\T,S)1

2
  .        QBD. 

uu       '     ' '   uu ' 

As one would suspect from (3-120), the narrowband equivalent is: 

if ufa) -»  IX^^T,«)!2 

then U(a))exp(tjka)) =♦   I^^T^) I2  . uu   ^ • (5-12T) 

Unfortunately, the time version is a bit more restrictive for the 

wideband case: 



I 
I 

I 
1 

63 

Theorem: Tf   u(t)   ^¥   'Xuu  l''s)l.t 

then   u(t)«q?(jklogt) «^  !X^)(0,S)!   • ^.^ß) 

j" The proof i» basically the same as  for ^.I2k),    U-  function 

log t  - logrS(t + T)l is not a function of t ot^y i'  T = 0> this  is 

the  source 0f the restriction to the  s-axis. 

The narrowband case is as  general as before' sinCe ^he 

form of y.j^ is symmetrical in time  and freqUency (compare a.5  ^ 

5-35): 

j Ifu(t)   =*   l^r,.)!2 

then u(t)exp(dkt)    -=♦   IX^)^) ^   • (3.l29) 

j.T j.  Speiser's Properties 

The following properties were origina].iy derived by 

] j. Speiser  [201 for the XJU
5)

(T,S)   function.    ^ appear h*^ 

' adapted to the XJU
2)

(T,S) function for the ^ci^ case that u(t) 

is  causal   (u(t) = 0, t < 0). 

The results derived below will show tHat' along ^i-tain 

curves in the (T,S) plane, the wideband ambiguity function ^ ^ 

written as an autocorrelation function. T^ nejor imPlic^i0n of 

Speiser's work is that, since much is known abo^ autocorr^^ 

functions, this knowledge can now be applies «, the syntheais of 
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£ 

ambiguity functions.    For example, certain pulse train modulations 

(such as Hufftnan codes or Barker codes   rU]) have been devised 

to give a large autocorrelation peak with minimal sidelobe levels. 

These waveforms can now be applied to the wideband function in 

order to achieve good doppler resolution properties. 

If   s = ez  , (5-150) 

then for causal signals 

00 

Xuu W) - ez/2fuit) u*(ezt)dt  . (5-151) 

4. I 

Letting t = e    , 

am 

- 00 

00 

-y*t.t,/2»(.t,)it.(*,+'>/2u.(.t,+')]df 
- CO 

00 

= y h(t •)h*(f + z)df (5-152) 
- 00 

where h(t) = et/2u(et) (5.135) 

or       u(t) -  (l/t^hdof t). 0.13k) 

Hence, the T = o profile of the wideband ambiguity 

function may be written as the autocorrelation function of h(t). 

I 
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The transformations   (5.155-^) are energy-preserving (unitary) 

since 

00 OO 00 

/" |h(t)|2dt = y*et!u(et)|2dt =    f \u{V)\2<it'. 

(5.155) 

(2) A similar transformation turns X ' evaluated along 

other curves on the T,S plane into autocorrelation functions. In 

particular, consider those curves through the point T = 0, s = 1, 

having the equation: 

T(S) = c(l - 1/s). 

(Sk.^  _    z/2 Then Xuu^C,Z^  = *"'^ / u(t)u*[e   (tfc)- c]dt. 

00 

(5.156) 

(5.157) 

Letting t + c = e 

Xuu (C'Z) 
z/2 

= e 

CO 

c)u*(ezH■t,- c)et,dt' 

log c 

00 

log c 

[e    '     u(e    - c;][e^        ''     u*(e        - v. Jdt' 

where    h (t) = e 

f hc(f)hc(f + z)df, 
log c 

t/2  / t      v 
'   u(e - c; 

(5-158) 

(5.159) 

(5.1^) 



G(> 

or u(t) = hc[log(t + c)]/(t + c) 1/2 (3.m) 

Since u(t) = 0 for t < 0, h  (t) a 0 for t < log c.    Thus (3.13$) 

can be written as a true autocorrelation function: 

*ifW) 
CO 

/ 
h (t)h*(t+ z)dt . (3.U2) 

As before. 

00 00 

f ihc(t)i2dt=y*iu(t)i2dt 
log C 

(3.1^5) 

(5) It should be mentioned that the X  '(T^S) function, with uu 

which Speiser originally worked, has (3«139) true for T(S) = c(s-l), 

i.e., straight lines through the origin ( T = 0, s = l). On the 

T,p plane, however, c(s -l) = c[2ß/(l-ß)], vhile  c(l-l/s) = 

cf2ß/(l + ß)], indicating the basic similarity of the curves so far 

as velocity is concerned. 

It is interesting to note that, if h(t) in (3.133) is 

equal to the non-L" function cos(kt), then u(t) in (3.13^) equals 

1/2 (l/t) ' cos (k logt), a waveform which will reappear in chapter IV. 

3-8 D. Hageman's Counter-example 

As the reader has undoubtedly noticed, the major emphasis 

(2) in this chapter has been on the X    ' (Kelly-Wishner) version of the 
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I 
wideband ambiguity function.    In addition to the argument in section 

' 2.2, the following example should demonstrate the advantage of 

12) ii>) I\        over x        .    The example was devised by D. Hageman of the Naval mi uu e J & 

Undersea Research and Development Center. 

Suppose the signal is sufficiently narrow in time to be 

represented as a delta function, 6(t).    For a target with doppler 

factor s and delay parameter   T= 2R/V, where R is the radial dis- 

tance to the target at the instant of reflection, the various 

echos are: 

1 

! 

^     ^ :  r(t) = «5[s(t-r)] = (l/s)ö(t-T)       (3.1U*) 

I 
j' FOr     ^ : r(t) = 6(st.T) - (l/s)ö(t-T/s) . 

i 

(3.110*) 

It clearly makes sense to write the time of arrival of the echo 

as t = T . The Kelly-Wishner return is the only model for which 

this result holds if ^ / 1. 

$•9 Skew Symmetry Relations 

It follows from O-hO)  and (J.^l) that 

i(.i2)(T,ß) - *i3)VT, -p) . (5.145) slu     ^ r, -uu 

Equation (J-l^) explains the similarity of the curves along which 

the x       and x functions may be written as autocorrelations au uu 
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(Section 3.?); it also explains the identical first order origin 

properties of  |x K   '\    •nd  lx      I     (Section 5.2.2). 1. properties of  \x}*\2 and  Ixj^j2 

; It also follows from (5.1*0)  that 

*la)(-$H -e"'"« 
so that 

xjf^-ir, i/s) - xi2)V,s)  . (5.11*6») UU '      '     ' uu 

The wel?.-kiiown narrowband version of  (5.1^6a) is skew symmetry in 

range and velocity, and follows directly from (5.57): 

xj^-W^xj^W) (5.1W*,) uu  '     ' r'        uu 

5.10 Separation Properties 

Theorem (J. Speiser [21]): 

If F   (T,S) = X ^ (T,«)I that is, if F is a wideband 

cross-ambi-wity function, then 

feiB\U2ir,P./mr ^^K'iB) 
(5.:U7) 

for B ^ 0 

and 
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where 

AF        (T,s)dT   =^5^(0)^(0)   (for all ■),  (5.U8) 

Uk(üo) Vt) 

Proof:        The equivsiLent of  (5*1^8) has already been proven in 

connection with (3"87)   (distribution of volume).    By substituting 

X„
(
^(T,8) into (5.U7): 

T. 2 

y6     I toJJTJ - A 

\B/A 
27T 

= v d/A r^6('JD-A)U1(a))U2(^)doo 

= (A/B)
1
/
2
 U1(A)U21;B)      QED (5-1^9) 

Corollary 1: Equation  (5«87) holds for cross-ambiguity functions 

as well as auto-ambiguity functions, provided one of the signals has 

zero d.c.  component. 

Corollary 2; 
(5) (5) 

(Speiser):    If X        (T,S) = > (T,S), then 
T.T. 2 2 

^(t) ■ e    u  (t), where k is an arbitrary constant. 



Corollary 5 (Speiser); If (J-l^T) holds for some function F   , 

(5) y1 
then F is a x      -type ambiguity function.    That is, condition 

(J'l^?) is both a necessary and sufficient requirement for some 

function of two variables to be an ambiguity function of type 

x(5). 
uu 

Corollary h: /eJATF„ u ( T,A/B)dT = (B/A)1/2!) (A)U*(B)  (3.150) 

if and only if F   (T,S) = x ^'(T^). 

3.11 Narrowbandedness and Narrovtimeness 

The discussion leading to equation (5.69) was concerned 

with conditions under which the true echo approximates the Woodward 

echo model. It is also relevant to consider band limited signals 

for which the conditions (5.69) do not necessarily hold true. 

One does not expect such cases to be amenable to the Woodward 

approximation, but some simplified results may still be possible, 

along with added insight : oncerning wideband analysis. 

Consider first a strictly band limited signal, 

|U(Cü)J ^ 0 if and only if a). < to < CD      (5-151) 1 mm —  — max 

I 

: 

1 

where OJ . > 0. See Figure 5'2' mln 

I 
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|U(u>) 

I U (M/S) 

S< 1 

/ \ UiW) 

I 
|U«^S) 

Su) Min 

:v-/r-:f S>1 

Mir     "o r* Max t 
w 

S% 

sw 
Min Su 

ax 
Max 

Figure 3.2.     Doppler Scale Factors Applied to a Bandlimited Signal. 

There will be no overlap between the band limited signal 

(3«151) and its scaled self if either 

scD       < a) .   :        s < 
max        mm' 

to . 
mm 

(JD 
max 

or 
O) 

SCD .    > cu      :        s > min       max' 
max 

cu 

(5-152) 

(5.155) 
min 

It follows from (5-152) and  (5-155) that 

X
(2
\T,S)    •    0 if 

uu   v   '   ' 

> 

s  < 

0 
+ W/2 

CO 
0 

- W/2 

03 
0 

- W/2 

% 
+ W/2 

(5-15^) 
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where 

ÜJ ^  = CO  - W/2 
min   o   ' 

CD   = a) + W/2 (5.155) max   o   ' ' 

0 < W/2 < GO 

The greatest possible support for the ambiguity function in the 

s-direction is then the interval 

ou   + W/2      CD    - W/2 2W/CJü 

o        '2        o        ' 1  -  (W/2(Jü ) o CD   »W/2 

Equation (5-156) sviggests that one way (but not necessarily the 

only way) to achieve high resolution in velocity is to make the 

signal comparatively narrowbanded. If, on the other hand, an in- 

sensitivity to velocity is desired (i.e., good doppler tolerance), 

it is necessary that the signal be made comparatively widebanded. 

Now consider a time function u(t) such that 

u(t) = 0 :'.f and only if t - T/2 < t < t + T/2. 
(5.157^ 

By an argument similar to that given above, one sees immediately 

(2) that the greatest possible support for the Xv /(0,s) function is 

fined to the interval 

2T/to T 

0 1 - (T/2to)
2 

re 0 < T/2 < t . 
'    0 

(5.158) 
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Equation (5.158) is a rather strange result. It implies 

(2) 
that X  (0,s) is dependent upon the time origin of a time limited 

signal. Mathematically, it is a result antilogous to the narrow- 

band solution (5.156) arising from the identical operations in 

time and frequency of stretching-followed-by-correlation. Physically, 

it would seem to indicate a trade-off between duration of observa- 

tion time and accuracy of velocity measure, somewhat similar to 

the time-energy uncertainty principle of quantum mechanics. 

5.12 Utilization of Ambiguity Function Properties Derived 

in this Chapter. 

The foregoing results are so varied that comparatively 

few will be utilized in the remainder of this dissertation. Those 

properties that will be used or referenced in the sequel are as 

follows: 

1. The second derivatives of IX^(T,S)|2 at (T,S)= (0,1) 

(equations 5«18) and the average curvature concept (5«5l)' 

2. The upper bound for ambiguity volume over any strip 

drawn parallel to the x-axis (5«85-5-85)^ and its depen- 

2 
de nee upon D. . 

1/2 
5-      The fact that the time scaling a ' u(at) results in a 

T-scaled wideband ambiguity function with no change of 

scale along the velocity axis (5*101). 
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h. The ambiguity function of two convolved signals  is  a 

T-convolution of two auto-ambiguity functions   (J-ll?)» 

(2) 5« X      (T^s) is the only ambiguity function whose echo model 

has a straightforward physical interpretation for 

u(t) =  5(t).     (5.1^) 

6.      The more narrowbanded a function becomes, the smaller is 

its support along the s-axis (3»156). 

Although many of the ambiguity properties of this chapter 

are not necessarily germane to the remainder of the dissertation, 

they have nevertheless been catalogued as possible aids to future 

analysis. 



CHAPTER IV 

DOPPLER TOLERANCE 

The following discussion is still concerned with the special case of 

constant velocity point targets.   The basic task of this chapter is to illustrate 

the ways in which some of the ideas developed in Chapters II and III can be 

used to derive a wideband signal possessing a specific desired property.   The 

particular property which will be required of the signal is chosen to be doppler 

tolerance [6 ]. 

Doppler tolerance can be defined in several equivalent ways.   Basic- 

ally, the property implies that a doppler compressed (or stretched) signal will 

still be recognized (by a single correlation process) as a reflected version of 

the transmitted waveform, regardless of the reflector's velocity.   If one makes 

hypotheses about target velocity as discussed in Section 3.1, the maximum 

correlator output will be relatively insensitive to the velocity hypothesis if the 

signal is doppler tolerant.   Such a waveform will make ^   I v^   (T,S) I rr -ao<T<aoIAuU 

relatively insensitive to changes in s ■ 

If one envisions a target whose parts move relative to one another, 

the doppler tolerant waveform can be a means of obtaining maximum correlator 

response if the signal is reflected from such a target.   This sort of advantage 

tends to be obscured by an energy normalization, but it is obviously of prac- 

tical importance if such targets exist.   Two examples: 

75 



; 

: 

: 

: 

i 
i 

76 

1. A missile or meteor whose ionized "chaff" or tail is 

constantly created and left behind, resulting in a composite 

target with a wide range of velocities. 

2. An insect (e.g., a moth) whose wings add greatly to its 

acoustic cross section, provided their reflections add to 

correlator output in spite of the wings ' velocities relative 

to the thorax. 

The above comments concerning targets whose parts move relative 

to each other are subject to some qualification.   It is true in both narrowband 

[4] and wideband [22] analysis that the ambiguity function can have a long, 

narrow constant amplitude ellipse near the origin, like that shown in Figure 4.1. 

Figure 4.1.    Illustration of Point Target Resolution Capability. 
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If the target is characterized by points T. and T   in Figure 4.1 (two points at 

exactly the same range but with differing velocities), the correlator will rot 

react strongly to the response from both targe's.   If, however, the target 

consists of T   and T , then a greater correlator response will occur. 

Both the meteor and the insect will probably have some target points 

outside the ellipse and others within it.   To the extent that echo points lie within 

the ellipse, one can think of correlator output power as being embellished, 

enhancing initial detectability.   In this sense, doppler tolerance may be con- 

ceived as antithetical to unambiguous target resolution .   If one seeks to 

separate a missile from its chaff (perhaps with the intent of distinguishing it 

from a meteor), a "thumbtack" ambiguity function is desirable.   Such a resolv- 

ing waveform separates the target into its component parts; the tolerant wave- 

form seeks to lump the parts (or, at least, some of the parts) together. 

4.1 Trajectory Diagram Approach. 

4.1.1 Trajectories to Reduplicate a Given Signal. 

If the correlation between two signals (or the inner product of two 

signal vectors in the space of square-integrable functions) is really a measure 

of their similarity, then a doppler tolerant signal is one which reduplicates 

itself under a whole group of possible energy invariant time scalings.   Consider, 

then, an arbitrary waveform that is reduplicated by reflection from a moving 

target (Figure 4.2). 
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Figure 4.2 indicates a group of possible trajectories that result in 

reduplication (more or less) of the arbitrary waveform.   These trajectories 

are constructed by connecting the intersections (or reflection points) of the 

45° construction lines [6].   The trajectories with more reflection points 

will yield better reduplications.   The best such trajectory if seen to be the 

horizontal one, i.e., a motionless point target.   This corresponds well with 

the definition of a point target as one which, when held motionless, returns 

an undistorted version of the transmitted signal. 

As demonstrated by the above argument (paraphrased from 

Rihaczek [6]) it is a straightforward process to obtain acceptance trajectories 

(i.e., trajectories which result in a reduplicated waveform and therefore 

"acceptance" of the returned echo as a reflected version of the signal) if the 

signal is given.   But the reverse process, i.e., finding the signal-matched 

filter pair when the target trajectory is given, is not explicitly discussed by 

Rihaczek.   It is simple to find an unmatched filter to accept a given trajectory 

for a given signal; an important example is the compressed version of the 

m 
V 

Figure 4. 2.     Trajectories Which Result in Approximate 
Reduplication of a Given Waveform. 
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signal used for velocity hypothesis testing and illustrated in Figure 2.4.   In 

fact, it is also possible tj lind a matched signal-filter pair when an arbitrary 

trajectory is given.   A giaphical method for doing this will now be introduced. 

4.1.2        A Method of Deriving Signals That Reduplicate Themselves When 
Reflected From a Point Target With Given Trajectory. 

Careful study of Figure 4.2 reveals the following properties of 

trajectory diagrams. 

1. The horizontal line always produces a reflection that 

duplicates the incident signal (a property that has already 

been discussed). 

2. The other trajectories which (more or less) reduplicate 

the incident waveform must pass through the intersections 

of the 45   construction lines.   Certain points on the trajectory 

are thus apexes of 45   right triangles with bases on a hori- 

zontal line (a fact that was used in Chapter II). 

3. Because of the geometry of the diagram, if a trajectory re- 

duplicates a given signal, then its reflection about the hori- 

zontal trajectory also reduplicates the signal.   For constant- 

velocity (linear) trajectories, this means that a signal-matched 

filter pair accepting a trajectory with slope ß  will also accept 

the one with slope   -ß. 
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The above three properties suggest a straightforward graphical 

method to find the signal that reduplicates itself when reflected from a point 

target with a particular trajectory (linear or nonlinear). 

1. Given the trajectory, construct its mirror image about a 

horizontal line. 

2. Inscribe diamond-shaped figures with 45   sides between 

the two curves (trajectory and image) as shown in Figure 

4.3. 

3. The matched signal 'n zero crossings, maxima and minima, 

etc., are found from the abscissa intercepts of the lines 

delineating the inscribed diamonds. 

This method will be called "the inscribed diamond construction technique." 

INSCRIBED DIAMOND 

GIVEN TRAJECTORY 

MIRROR 
IMAGE 

ZERO (ETC.) CONFIGURATION 

Figure 4.3.       The Inscribed Diamond Construction Technique. 
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4.1.3        Application of the Inscribed Diamond Method to Linear Trajectories. 

Given a linear trajectory with slope ji , one wishes to design a signal- 

matched filter pair that will accept this trajectory.   In other words, one wishes 

to find a signal which will very nearly reduplicate itself upon reflection from 

a point target with given constant velocity. 

The inscribed diamond technique, when applied to a linear trajectory 

such as that shown in Figure 2.2, results in a diagram like the one shown in 

Figure 2.3.   The only difference is that now there are many (instead r' only 

two) triangles inscribed side-by-side within the two rays.   Just as the ratio 

of t   to t   (Figure 2.3) was shown to be s, this is the ratio of t   to t   (t   being 

the base of the next triangle, corresponding to the diagonal of the next inscribed 

diamond). 

If the construction lines are taken to symbolize real zero locations, 

and if one is working with an analytic signal: 

u(t)    =  uR(t) + jüR(t) = a(t) ej0(t) (4.1) 

uo(t) =   a(t) cos e(t) (4.2) 

where 

ü(t)    = the Hilbert transform of u(t), 

then if a(t) is slow-varying or non-oscillatory, u  (t) will have zeros at times 

z   such that 
n 

0(z ) =   (2n+l) n/2   . (4.3) n ' 
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If the first zero occurs at t = 0, then it is evident from the inscribed diamond 

technique that 

t2 = tl/s;t3 = t2/8=tl/s2''tn~tl/8n'1   ' (4-4) 

If z   occurs at t = 0, then z, occurs at t = t , z   occurs at t = t   + t9, 

z   at time t = t, + t0 + ... + t .   That is, if t, = 1: 
n 1     i n 1 

z   = t  = 1 (4.5a) 

z2 = tl + t2=(1+ 1/0) ti={1+ 1/S) (4'5b) 

z   = t  » t_ + ... + t   = (1 + 1/s + ... + 1/s ~  ) . (4.5c) 
n     i     £ n 

It is clear from(4.4) and Figure 2.3 that l/s < 1.      Therefore (4.5c) may be 

written in closed form as 

z    ,   1 - (l/9)n (4 6) 
n       l-(l/s)      ' (      ' 

Thus the desired phase function  ö(t) is such that 

9 {[l -(l/s)n]/[l -(l/s)]}=2n7r/2 + 7r/2 . (4.7) 

0(t) must be capable of converting n as exponent to n as multiplier.   This 

immediately suggests a logarithmic variation with n.   One can therefore 

attempt to write 0(t) in a general form such as: 

9(t) =   f(s)log Ch(s) + g(8) t] (4.8) 

and determine whether there exist three functions (or constants) f, h, and g 

such that (4. 7) holds true: 
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i 
, f(C)log FhCO+gCC)     (YT^-)] = (2n+1)'r/2 (4'9) 

where 

I 
C =   1/8. 

I 

i 

I 

Letting 

g(C>  ■  (l-C)g1(Oej/2t(0 

(4.9) gives 

h1(C)+(l-Cn)g1(C)=en7r/f(C)   . 

Letting      h     =  1 and g    =  -1 gives 

so that 

f(n   =  Ti/log r. 

(4.8) thus becomes 

9(.,    =,./logC).og[.1/2^ = -.,1-C)e1/2^«] 

= 7r/2 + (7r/log(l/s)) log [ 1 - t(l - l/s) ]    . (4.10) 

The reader can verify that (4,10) satisfies (4.7).   For a given value of s, one 

can rewrite (4.10) as: 

9(t)    = Tr/2 + kj log (1 - k2t)   . (4.11) 

I 
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Then 

Cos 0(z )= -Sin [k log(l - k t) ] 
n i ä 

= -Sin(nrr)= 0. (4.12) 

Using a more heuristic approach, Rihaczek [6 ] derived a phase 

function: 

ÖR(t)-k3log(l-k2t)    . (4.13) 

If k   = k,/^, then Cos 0„(z ) = Cos(n7r/2) = 0 for odd values of n.   The Rihaczek 
3       1 R   n' v 

phase function is seen to match a slightly different linear trajectory than that 

of (4.10-11); aside from this, the two solutions are equivalent. 

The horizontal construction line in Figure 4.3 could just as easily 

have been drawn above the given trajectory as below it.   As shown in Figure 

4.4, this is equivalent to reflecting all the inscribed diamonds about a vertical 

line passing through the intersection of trajectory and horizontal construction 

line (point A). 

HORIZ. LINE 
ABOVE TRAJ, 

HORIZ.  LINE BELOW TRAJ. 

Figure 4.4. Two Possible Inscribed Diamond Soluti^.- 
for a Given Trajectory. 
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In terms of the solution  fl(t) = k   log(l - k t), the construction shows that an 

equally valid solution is obtained by letting t' = -t + l/k    ; 

0(t') = k3 log(l + k2t " 1) = k3 log(k2t)    . (4.14) 

It has thus been demonstrated via trajectory diagrams that a doppler 

accepting phase has the form (4.11), (4,13), or (4.14).   In the process of the 

demonstration, a new construction technique has been derived.   This technique 

should prove especially useful for cases involving non-linear trajectories. 

4.1.4 Doppler Tolerant Pulse Trains. 

Suppose that each of the 45   lines in Figure 2.2 represents the posi- 

tion of a pulse within a signal composed of a sequence of pulses.   A doppler 

tolerant pulse train would then have interpulse spacings as described by 

Equation (4.4): 

K    = <1/s) K i= (1/s)2t„ o = (1/s)k * v n n-i n-z n-k 

or 
k 

t =   (7-^)   t    I«(l-2/3)kt    .     . (4.15) n \l+/3/    n-k     x '     n-k v        ' 

Rihaczek has derived a similar expression without reference to trajectory 

diagrams ( [6], Equation (12.30)) . 

4.2 Compression Diagram Interpretation. 

For the special case of constant velocity point targets, there is 

another diagrammatic way to view the doppler time-scaling effect.   One can 

draw the signal as if it were projected onto a movie screen-   Compressed or 
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stretched images are then obtained by moving the screen closer to or further 

from the projector.   The pictorial representation of this process will be called 

a "compression diagram."  See Figure 4.5. 

UNCOMPRESSED 
IMAGE OF TIME- 
LIMITED SIGNAL 

COMPRESSED VERSION 
OF THE ABOVE SIGNAL 

PROJECTOR 

Figure 4.5.       Compression Diagram. 

The problem is to determine the zero distribution (and/or distri- 

bution of maxima and minima, etc.) that will give rise to a compressed wave- 

form which correlates closely with the original waveform.   If the compression 

factor is  s (>1), then the new movie screen would be inserted as shown in 
o 

Figure 4.5. 

In order to have a large correlation between signals when they are 

phased as in Figure 4.5 (i.e., when their starting times are identical), the 

zero at T/s   should correspond to a zero of the original signal.   Line A-A ' 

(Figure 4.6) is therefore constructed; the original signal should have a zero 
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at point A ' .   But the new zero at A ' causes a zero at point B in the compressed 

signal, where B is on the line A • - P.   For a large correlation, B should have 

its counterpart B ' in the original signal.   B ' , in turn, causes a zero in the 

compressed waveform.   Continuation of this process leads to the diagram in 

Figure 4.6. 

Figure 4.6.     Compression Diagram Derivation of a 
Doppler-Tolerant Signal. 

It is clear from the construction process that 

t    = (, /s ; t    = t /s    = t /s    : • • 
2        To'    3        2'  o        I'  o ' 

(4.16) 

Since (4.16) is identical to (4.4), the same method as before will yield the 

phase expression (4.14).   If the compression triangle POT were flipped over 

about its vertical side PO, the resulting phase would be that of Equation (4.13). 
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4.3 Global Optimization Approach. 

Doppler tolerant phase functions can, in fact, be derived by more 

conventional methods, i.e., by using the ambiguity function. 

Definition;    Given an acceptance threshold  TJ    and a specific value of 

s = s , a real unit energy signal u(t) is doppler accepting for s   if 

max       V      (s  , T) >T?    . (4.17) 
^    ^       Auu x o      '      'a 

-oo < T < ^ 

Furthermore, the signal u (t) is defined to be maximally doppler accepting 

if 
(2) (2) 

max       v        (s  , T) s      max       X     (s  . T )   . (4-18) Au u v o     ' 'xiu v o 
-oo<T<ao O   O -oo<x<ao 

where u(t) is any other admissible signal. 

(2) 
Defining the point in T at which X*   (Ti so) is largest by the ex- 

pression T   (s ), the definition says that one should maximize the functional 
nr o' 

s1 2    /u(t)u   [s(t+T   (s))ldt-X_   f   u2(t)dt (4.19) 
o      y     o       o L ov        m   o    J E J      ow 

-ar, -00 

where u (t) is assumed to be real and  X is Lagrange multiplier for an energy 

constraint. 

Letting u (t)—u (t) + c Tj(t), differentiating the functional with 

respect to   c and setting the result equal to zero for   c = 0 (first variation 

= 0): 

s        /  Tj(t) u   TS^+T   (s))'|dt+s        /Tjfs^+T   (s ))lu (t)dt 
o    ^    'w   o L ov       m   o    J o    J    'I oy       m   o  J   ov ' 

2XE 
friit) u (t)dt= 0 (4.20) 



mm^l^^^*wvmmvmmi i ■ i      i 

I 
I 
I 
I 

89 

Changing variables in the first and third integrals, let 

t = s (f + T   (s )) ; t1 = t/ s   - T   (s ) (4.21) 

Then 

82   fvU  (t'+ T    (S   ))lu   [s2!1 + S   T    (S   ) + 8   T    (8  )ldtl 

o J   'lo*       nr o"]   oL o o mx o'      o nr o'J 

I 
1 

+   8 o
2/r,[so(t+rm(8o))]uo(t)dt 

- 2X   s    /nfs (t1 + T   (s ))] u fs (f -f T   (s »Idt1 
E 0y  L0      m 0 J 0L 0       m 0 J 

= 0 (4.22) 

This equation is satisfied for all Tj(t) if 

SU     St+S    T    (8) +  8T    (8)+U(t) o oL o        o  m   o        o m^ o'J       ox' 

2X  s2u  fs (t + T  (s ))1 = 0 E o   oL ox       m^ o"J (4.23) 

By the Schwarz inequality, 

T   (1) = 0 nr ' (4.24) 

Applying condition (4.24) to (4.23): 

u (t) + u (t) - 2X u (t) = 0 , OT\    = 1 ow      ow        E ow E 
(4.25) 
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Therefore, (4.23) becomes, for the special case r   (s ) = 0: y       ' m^ o' 

s u (s2t) +u (t) = 2s    u(8 t)  . (4.26) 
o ox o '      ow o    x o ' 

Now suppose that 

u (t) = t 2 cos fctr/logs ) logtl . (427) 

Then 

s    u (s t) = s u (s2t) = u (t)  , (4.28) 
o   o   o o o   o o 

and (4.26) becomes an identity.   Notice that u (t) is not really square-integrable, 

so that other constraints should (and will) be applied to the problem.   The phase 

function, however, is a perfect match with (4.14). 

Having derived phase function (4.14) by ambiguity function analysis 

one may again ask whether the Rihaczek function (4.13) is an equivalent 

solution for maximal doppler acceptance.   As far as the ambiguity function 

is concerned, the initial definition (4.17-18) shows that two different signals 

u (t) and u (t) will have the same doppler acceptance property at s = s   if 

max     Y     
(2)

(T»
8
 )=     max       X     (2)

(T,S ) . (4.29) Au u    x     o' ^       u,u    ^     o' x       ' 
-««<T<«D O   O -oo<x<oo 1   1 
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If appropriate amplitudes are u^od, the signal u   with phase 

function (4.14) can be related to the signal u    with phase function (4.13) 

by the transformation that has already been discussed, viz: 

^(t) = uo(l/k2-t) . (4.30) 

The complex wideband ambiguity function corresponding to u (t) is 

1 

Xu u ^^ s) = s2 /   Uo(t)Uo [S(t + T)ldt (4,31) 
o o "o J 

where it has been assumed that u(t) is causal. 

Letting t= l/k   - t' : 

\ u2' -s2 /    uo<1/k
2 - »'»"o \1/k2 - fl<t' -" ir)]*' 

oo-» L 2 J 

(4.32) 

The causality of u (t) means that 

u (t) = 0 for t < 0 ,  or 

u (t) = 0 for t>l/k    . (4.33) 
1 a 

Then by (4.33), (4.32), and (4.30), 
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X      (2>(T.8) = X      (2) (-T ♦ ^ . 8)  . (4.34) 
o o 11 2 

It follows that for any given value a    of a: 

(2) (2) 1~So 
max       v     * '(T.B ) «      max v (-T ♦—r—, s ) *\x u    y     o' ^  ^ Au u,  x        s k0      o' 

max     v      (2){T,8 ) (4.35) 
u u o -CD<T<«D 11 

so that the property (4.29) holds true; the phase functions (4.14) and (4.13) 

correspond to signals that ire equally doppler accepting. 

The two log phase functions have thus been derived by a method 

that is independent of trajectory diagram ideas, by considering the ambiguity 

function from a global viewpoint.   In the next section a slightly different 

approach will be used.  The properties of the ambiguity function near the 

origin (T = 0, 8 = 1) will be utilized to attack the problem of doppler tolerance. 

Consideration of global properties will then appear as a constraint to keep 

ambiguity volume large.   The advantage of such an approach lies in the emer- 

gence of certain moments of the waveform as important parameters for 

wideband signal design. 
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4.4 An Application of Ambiguity Function Properties. 

The doppler tolerance problem provides an opportunity to apply 

some of the wideband ambiguity properties derived in Chapter in.   Properties 

near the origin and a volume upper bound will be particularly helpful. 

Section 3.2 investigated ambiguity function properties in the neigh- 

borhood of a correct hypothesis about the target parameters r and s.   For 

doppler tolerance purposes, the primary concern is with the behavior along 

the line T  (s) discussed in Section 4.3.   Recall that r   (s ) was defined nr ' m^ o' 

as the point at which x ' '(r, s ) is largest, so that r   (s) must define the 

locus of such maxima and must pass through the origin, as expressed by 

equation (4.24). 

£. L. Titlebaum (the author's thesis advisor) has derived an 

i    (2)i2 
explicit expression for the behavior of \\ * 'I    along r   (s) in the neigh- 

borhood of the origin.   His argument is as follows. 

By definition. 

^  IXU
(
U

2W)|2, =0. (4.36) 

In the neighborhood of (r.s) ■ (0,1).  the ambiguity function is approximately 

given by (3.9) and (3.12). i.e.. 



94 

i 

i 
I 
I 
I 

lXu(u)(T'S)|2  W 1 ' CA2T2 * 2^(8-l) ♦ T?2(8-l)2] . (4.37) 

2     2 where X , rj , and y are given in (3.18). 

Applying (4.36) to (4. 37) gives 

Tm(8) «-Y(s-l)/\2 . (4.38) 

Substituting (4.38) back into (4. 37) then gives an approximate expression 

for the behavior of the ambiguity function along the ridge line (near the 

origin): 

lxu
(
u

2)(Tm.8)|2 « 1 - [TJ2 - y2/X23(B-ir . (4.39) 

A doppler tolerant signal will give a large correlator output 

regardless of target velocity.   That is, 

max     |x (2)(T,8)|2=  |x{2)(T   .8)|2 IAuu *     " IAuu N m   " 
-•< J<0D 

■/ 

should be as large as possible for any s if the signal is to be doppler 

tolerant.   By (4. 39), this implies that the expression 

2       2,.2 
TJ   - Y /A 

should be minimized. 
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It was shown in Section 3.2.2 that 

2  2       2 2      v 
77 A   >y      so that   77    = J1-   . (4.40) 

A2 

2 
Thus if 77   is made small, it follows from (4.40) that the whole quantity 

2      2     2 
T7   - y /\   will be made small.   A simplified problem is then to minimize 

2 
1 ■ 

Since, by (3.18) and (3.19) 

772 =yt2|u,(t)|2dt - \Jt\i(t)u*'{t}dt\2 > 0 . 

the problem could be simplified further by seeking to minimize the moment 

/t2|u'(t)|2dt = a^. (4.41) 

2 
The problem solved here, however, will involve 77   as a whole rather than the 

a ^    - moment.   A generalized a - moment is discussed in Appendix C- 

2 
One therefore seeks to minimize 77  , which can be written as 

the sum of two functionals: 

T)2 = J1(a)+J2(a,e) (4.42a) 

where 

J1(a) =y tVdt - ^ (4.42b) 

J2(a,e) = Jt2fi2e2dt - {Jt&2fidt)2 (4.42c) 
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and u(t) = a(t) exp j9(t) , as before. 

Both J (a) and J (a,9) are positive or zero.   This may be 

demonstrated by using the Schwarz inequality as shown: 

i2 ya2(t)dtyt2a2(t)dt ^ lytaädtl 

where 

/ 

2 
a (t)dt = 1    for unit energy. 

( taädt = ta   |    - i  a[tä+a]dt 
«00                                               -00 -200 

00 OB 

«a2 I   - / 
-00 -TOD 

or 
/CO 

taädt = |[ta2 |   - l] 

00 
o 

Assuming that ta   |   = 0, 

00 

( tVdt > j ;    J (a) ä 0 (4.43) 

with equality only if ta = k a or a(t) = k t 1, where k   and k   are constants. 

Also, 
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00 OD 00 

f ta29dt|2 s   f t2a2e2dt •    f a2dt 

or 

J2(a,e)2:0 (4.44) 

d9        3 
with equality only if ta8 = k a » 37" = "7" »    or 

9(t) = k3 log t + k4 (4.45) 

where k„ and k   are constants. 
3 4 

T)   is therefore minimized with respect to all admissible phase 

functions if 9(t) = k   log t + k   , regardless of what amplitude a(t) is used 

(J (a,9) = 0 for all a(t)).   It will henceforth be assumed that e(t) = k   log t 4 k 

for an optimally doppler tolerant waveform.   Then 

2 
V = J^a) =  J   t2ä2dt - ^ . (4.46) 

Given the optimal phase 6(t) ■ k   log t + k  , one seeks the optimal 

amplitude to minimize (4.46). 

For a physical radar system, the energy £ and absolute signal time 

duration T should be constrained.   One should also include a constraint to 

(2)/-     »vl2 
XD  icu^c   away  »xvmi uic uxxgui.     o\mi yu. 

(2) I 

ensure that |x      (T   , S)|    is large away from the origin.   Both (3. 85 and 

(3.88) imply that if D   is allowed to become small, the height of |y ^ 
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away from the origin will decrease rapidly.   The mean square time duration 

is thus constrained to be large, helping to produce the desired global properties 

of the ambiguity function. 

The problem is now to find the a(t) that minimizes the functional 

,T -T 
F(t,a,a)dt = / 

'0 J0 

The Euler-Lagrange equation [23,24] provides a necessary con- 

dition for the function a(t) to be an extremaloid of the functional (4.47): 

1 

I 
I 
I 
I 

T T 
J    F(t,a,a)dt =J    [t2a2 + (\   - j)a2 + \ t2a2]dt . (4.47) 

The Legendre necessary condition requires that 

a2F 
H  * 0 (4.49) 

in order that the extremaloid be such that the functional is minimized. 

In the case (4.47): 

eSV 2 
ir = 2tä (4.50) 

^-| = 2t2^0 (4.51) 
aä2 

^ (|f) = 4tä + 2t2ä (4.52) 
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ff = 2(XE - i)a + 2Xtt
2a . (4.53) 

The Legendre condition is satisfied by (4. 51).   The Euler-Lagrange equation 

is 

(\_ - 7)a + \,t2a - 2ta - t2ä  = 0 ,  or 
£     4 t 

2          /1/4 " ^E \ •a+ £ ä + f -_^ - xj a . 0 . (4.54) 

This is a form of Bessel's differential equation [25]: 

2      2 

Equations (4.54) and (4.55) are identical if 

«+Lr£k + (^- + ^a = 0- (4-55) 

E 

A solution to (4.55) is 

\t = -ß2 (4.56a) 

a   = -| (4.56b) 

A   = p2 (4.56c) 

a(t) = taj (/3t) (4.57) 

so that a solution to (4.54) is 

.t-l/2J 
5 p a(t) = kKf

l/2JJßt) (4.58) 
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where p and ß are related to the Lagrange multipliers *_, and \   by (4. 56). 
• t, t 

The constant k   is chosen to yield the correct energy. 
5 

In order that a(t) be finite at t - 0, one must have p &l/2, since 

[25] 

limt-l/2J(0t)=l^i 
pVK ' p 2p 

t-0 H H    F 
(4.59) 

In order that a(t) be finite at t = T, it is necessary that 

J (/3T) = 0 
P 

(4.60) 

That is, for a given value of p.   ß should be such that ßT corresponds to one 

of the zeros of the function J {ßT). 

.2.2 
In order to minimize the moment J t a dt,  one can choose 

0 
among the available functions (4. 58) on the basis of which one(s) yields the 

lowest value(8) of this moment.   Using various identities [25] and integral 

properties [26] of Basse 1 functions, it can be shown that for a(t) as given 

in (4.58) and (4.60): 

i 
I 
I 
I 

/ 
t2a2dt = k2 

5 
tt>-l/2)''?..^-Jp

2
tl(ßT) 

2(P-l/2)   t   [V^l^'l' 
n = 0 

(4.61) 
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where 
rT    J   (/3T) 

■/  ^ 
E = /       -^  dt 

"0 

Investigation of Bessel function zero properties [25] shows that there exist 

no Bessel functions such that J (j3T) = 0 and J      (|3T) ■ 0 also.   Given that 

2 2 
condition (4.60) must be satisfied, it follows that the term [(/3T) /2] J      (/3T) 

will always be greater than zero.   So to minimize (4.61) for a given value of 

p, it follows that ßT should be as small as possible.   This means that ßT 

should correspond to the first zero of J (t) for t > 0. 

The waveform described by equations (4.45) and (4.58) bears a 

striking resemblance to the cruising pulse used by the little brown bat, Myotis 

lucifugus , for the initial detection of prey [27].   D. A. Cahlander's experi- 

mental picture of the Myotis cruising pulse is shown in Figure 4.7.   (The 

bat's exact amplitude function a(t) may not be precisely as shown [54].)  If 

a(t) is sufficiently non-oscillatory, the instantaneous frequency can be defined 

as the time derivative of the phase: 

f(t) = l/T(t) = e(t)  . (4.62) 

If 9(t) = k   log t + k  , then 9(t) = k /t, and the instantaneous period T(t) is 
«5 4 o 

T(t) = (l/k3)t (4.63) 



102 

z 
o 
{/) 

ÜJ -J 
< 
2 
O 

en 0) 
Ul 
Q: 
a. O 

Q Q 
z O 
D IT 
O Ul 
(/) 0. 

UJ 

u 

o 
•> 
in 
E C 
w        ü 

C3 

0 
Ü 

o s 

i2    • 
jp H 
bC    • 

co 

£   3 u 
u 
S T3 

U 

m 

0) 

Ü 

i 
(oasr/) aoia3d 

I 
I 



103 

i 
I 
I 
I 
I 

( 

/■ 

\ 

\ 

\ 

\ 

u 
u 
| 

w 

H 

g 

Ü 
0 
H 
L 

o 
0) 

1 a a 
£ 
< 
■a 

ac 

V 

(N 



104 

The expression (4.63) agrees with Cahlander's experimental 

measurement of instantaneous period versus time. 

Figure 4.8 shows a sample function of the form (4.58) with p = 7 

and ß = 2581.   This function is seen to correspond in its general shape to the 

amplitude of the cruising pulse shown in Figure 4.7. 

Another bat signal is closely approximated by the solution to the 

2 
above problem with one more constraint.   Rewriting 17   for convenience: 

.■■/ t2|u'|2dt 
/ 

tea2dt 1 
4 

(4.64) 

(1) The first term (a w - moment) on the right side of (4.64) has a lower bound 

derivable from the Schwarz inequality: 

/t2|u'|2dt/t2|u|2dt ^ |yt2uu'*dtl 

r |/t2uu'*dt|2 

(4.65a). 

(4.65b) 

I 
I 
I 
I 

D    has already been constrained to be large, so if the left side of (4.65b) is to 
I» 

be small, a further necessary constraint would require that 

l/t2»«-«!8 .[/u8*]2 «[/t2».2*]2 
(4.66) 
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be kept small. *  One can thus define a new functional 

rrT   2 I2        f/*1  2- 2 "I2 
K(a,M) = J(a,e,t) + xiy     ta dt     ♦ ^   1/     t Sa dt 

(4.67) 

Define 

f     2 J     ta dt = M„ (4.68a) 
0 

Z"1     •  2 
/     tea dt = M, (4.68b) 
0 

T 

/ 
t2ea2dt = M0 (4.68c) 

z 

Replacing 9 by [0 + crj(t)] where 77 is an arbitrary piecewise smooth** 

function such that 

T?(0) = r\(T) = 0 (4.69) 

and letting 

•The moment (4.66) is also a measure of acceleration sensitivity.   It will 

be demonstrated in Chapter V that constraining (4.66) amounts to an 

acceleration tolerance requirement. 

**T}(t) must have a continuous first derivative except at a finite number of 

points. 
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dK ■ 0       (first variation ■ 0)  , 

c-o 

(4.70) 

one finds that 
Ml 

/     2tT?a2[tfl - M   + ^MJDdt « 0 (4.71) 

(4.71) holds true for all Tj(t) if 

tfl - M   + \   M0t = 0 1      m   z 

or 

9 - M/t - KmU2 (4.72) 

Replacing a(t) by [a + CT>] , repeating the above procedure, and 

using the fact that 

-T 
J    Afjdt = -J    nit2* + 2ta]dt , (4.73) 

gives 

-t2ä - 2tä 4 t292a - 2M1t9a + (^E " 4)« ♦ \t2a 

+ 2X   M0t 9a + 2\   M U = 0 . 
m   2 mo 

(4.74) 

I 

I 
I 
I 
I 

Substituting (4.72) into (4.74) and dividing through by -t : 

ä + 2a/t + [(X 2M2 - XJ - 2X    (M M0 + M )/t 
* m   2      t'       mx   1   2       o' 

(4.75) 
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\     and K may be chosen such that 
m t      ^ 

'mX2 - \ = 0 * (4-76) 

The remaining part of (4.75) can be put into the form 

[, o      2      2 21 (^y-l)2 + a^£JL_Ja   mQ (477) 

a    = -- , (4.78) 

Y    = | . (4-79) 

-8\   (M,M0 + M ) , (4.80) mx   1   2        o' *       ' 

p2 = 4(\E-M1
2) . (4.81) 

The solution to (4.77) Is [25]: 

a(t) = ktaj {ßty) = kt  2J (^t2) . (4.82) 

It is evident that superfluous oscillations of a(t) will unnecessarily increase 

T 2  2 
the moment  f t a dt.      Therefore one requires that the first zero of (4.82) 

0 
for t > 0 occur at t = T.   In order that a(t) be bounded at t = 0, a further 

requiremer, is that p ^ 1. 
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Notice that (4.80) will be consistent with (4.68) and (4.72) if 

\    < 0.   One can then write 
m 

e(t)=k1/t + k2 (4.83) 

where k   and k   are both positive constants.   The instantaneous period associ- 

ated with (4.82) is then 

T(t) = l/9(t) = t/^ + k2t) . (4.84) 

The amplitude function (4.82) is drawn in Figure 4.9 for p = 7,   ß = 105.7. 

Also shown is the theoretical instantaneous period (4.84) with k   ■ 26.7, 

3 
k   = 33.3 x 10 .   Figure 4.9 compares favorably with Figure 4.10, which shows 

the experimentally observed cruising pulse of Lasiurus bo re alls, the red bat 

[27].   The time origin for the observed pulse should be made about 1 msec 

earlier for easy comparison with theory.   (Again, the actual a(t) used by the 

bat may not be precisely as shewn in Figure 4.10 [54].) 

The reader may find it disturbing that the functional K(t,a,0, a) 

was minimized first with a(t) given (by setting the first variation of 9 equal to 

zero) and then with 9(t) given (by taking the variation of a).   Following the 

discussion of G- A- Bliss [55], p. 11, the procedure is justified by defining 

I(€) = K(t,ao+(i7,9o+fr,äo+ö)) (4.85) 
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where a (t), 9 (t) are functions which minimize the functional K and where 
ow     o 

C(t), like T)(t), is an arbitrary piecewise smooth function such that £(0) ■ £(T) 

= 0.   If a (t) and 9 (t) are indeed functions which minimize the functional 
o o 

K(t, a, 9, a), then the function 1(e) must have a minimum at c = 0, that is, 

r(0) Hl^O- 0. (4.86) 

For the particular case £(t) = 0, it must still be true that 

1.(7?»0) = 0 for a11 admissible T7(t). (4.87) 

Similarly, if 77(t) = 0, 

MO. 0 = 0 for all admissible C(t)- (4.88) 

It is assumed, of course, that for £(t) = 0,  d(t) is not only held fixed; it is 

equal to its optimum function 6 (t).   For this reason, one must verify that any 

proposed solutions do not produce inconsistencies when they are substituted into 

the equations I (77,0) = I (0, 0 = 0 . 

In Chapter VI, the same method will lead to a pair of nonlinear 

simultaneous integral equations.   Whereas the above solutions for a (t) and 

9 (t) can be made consistent with each other by simple manipulation of some 

constants and Lagrange multipliers, a consistent solution in Chapter VI will 

usually be obtainable only with an iteration technique. 
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The many approaches to the doppler tolerance problem have 

undoubtedly been tiresome for the reader seeking only answers.   The main 

purpose of this chapter, however, has been not so much to obtain results 

but rather to demonstrate the usefulness of the various analytical methods 

and properties of Chapters II and in. 

1 

1 
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CHAPTER V 

IMPORTANT GENERALIZATIONS: ACCELERATING POINT 
TARGETS AND DISTRIBUTED TARGETS 

Two generalized models for target echoes will be introduced in this 

chapter.   The first model takes account of acceleration, so that the point 

target response is characterized by three parameters instead of two.   It is 

pointed out that a system which is implemented with constant velocity targets 

in mind may well fail to detect a rapidly accelerating (or declerating) target. 

The consideration of acceleration is thus more than just pedantic hairsplitting. 

The second echo model assumes that the target is no longer a flat, 

perfect reflector of undistorted waveforms.   It will be shown that the more 

widebanded a signal becomes, the less likely that the echo is an exact 

(doppler compressed) replica of the incident waveform.   It is postulated that 

an object's echo can be derived from a convolution of signal and impulse 

response, just as in linear system theory.   A distributed target would then 

be characterized by its impulse response or by its reflectivity as a function 

of frequency (i.e., its transfer function, the Fourier transform of the im- 

pulse response). 

Assuming that echoes can indeed be written as convolutions of sig- 

nals with target impulse response, one can find signal functions which give 

113 
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maximum power in the reflected waveform or maximum energy return, pro- 

vided the target impulse response is known.   It is pointed out that some 

practical situations exist for which the impulse response would be known 

a priori.   It is also possible to estimate the target's impulse response by 

a sequence of hypotheses. 

A class of distribution tolerant signals is then discussed.   By analogy 

with doppler tolerance, a distribution tolerant signal is defined as one which 

nearly reduplicates itself upon reflection from any target, regardless of the 

target's shape. 

By regarding the signal as a channel through which information about 

the target is conveyed, it is possible to define the target description capa- 

bility of a signal in terms of channel capacity (information carrying ability). 

Finally, two groups of associated waveform characteristics are 

described.   In one group are very narrowband, doppler resolvent, distribu- 

tion tolerant signals; in the other are wideband, doppler tolerant, high- 

capacity, range resolvent signals.   It is postulated that bats use waveforms 

from both groups, depending upon what information they wish to extract from 

their environment. 
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5.1       Accelerating Point Targets. 

5.1.1   An Ambiguity Function for Accelerating Targets. 

Consider once more the argument in Section 2.2.   As target motion 

is no longer restricted to constant velocities, acceleration is included in the 

expansions (2.4): 

T(t)  = t    +  C(t-t )  + a(t-t )2  +  . . . (5.1a) 
o o o 

R(t)   =  R(t /2) - v(t-to/2) - (a/2) (t-t /2)2 - . . . (5. lb) 

As before, 

vT(t)/2   =  R(t-T(t)/2)    . (5.2) 

Differentiating (5.2) twice: 

vT(t)/2   =   (l-T(t)/2) R(t-T(t)/2) (5.3) 

vf(t)/2   =   (l-T(t)/2)2R(t-T(t)/2)- (f(t)/2)R(t-r(t)/2)    . (5.4) 

At t   ~   t   , expressions (5.1) through (5.4) yield: o 

T(t0)   =  to; T(to)   =   C; T(to)   =   2a (5.5) 
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R(t /2)   =   -v; R(t /2)   =  -a 
o o 

(5.6) 

vt /2  =   R(t /2); vC/2   =  {l-C/2) (-v);a v   =  -(l-C/2)   a  +  a v 

(5.7) 

Solving (5.7) for C and a: 

~ ~2      ^     3 
C  = -2v/(v-v); a  = v   a/(v-v) (5.8) 

Here it is understood that v  = v ,  a  = a ; one is concerned 

with velocity and acceleration at the time of reflection. 

From (5.1), 

t- T(t)   = t - t   - C(t-t ) - a(t-t ) 
o o o 

=  (1-0 (t-to) - a(t-to)   - . . . (5.9) 

so that 

r(t)  - u[t-T(t)]   = u((l-C) (t-to) - a(t-tc)   - . . . ] 

= u 
~ ~2 
v + v v a 2 

v - v (v-v) 
J ^^o' (5.10) 
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This is the generalized result originally derived by E- J. Kelly and 

R. P. Wishner [5]. 

If /S = v(t /2)/v and € = a(t /2)/v ,  then the ambiguity function 

corresponding to r(t) is approximated by 

1/2 
Auu 

(T-^'-/[(^)-^]1  ^N'^ 
d-»)3 

r)2], (t + T)"|dt (5.11) 

where the approximation is caused by truncation of the time series.   The first 

term after the integral sign normalizes the echo energy. 

By Taylor's theorem [28], it is always possible to pick a time t   in 

the interval [t / 2, t ] such that 
o 

R(t) = R(to/2) - v(t1)(t-to/2) (5.12) 

Therefore, for a time limited signal it is still possible to write the ambiguity 

(2) 
function in the form v     [T(t /2), fl(t j] , but it must be understood that the 'uu     x o    '   ^ i'J 

velocity which maximizes this function is not necessarily that at the reference 

time t /2; ß can be the target velocity at any time during reflection.   Also, 

if there is indeed acceleration, the maximum value of the ambiguity function 

I 

I 

I 

I 
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*    (2) 
X [T(t /£), j3(t )] will always be less than one when u(t) and r(t) have 

unit energy. 

If maximum signal power is restricted in a high attenuation, high noise 

level environment, one must use long-time-duration signals in order to make 

signal-to-noise ratio at the correlator output (2E/N ) greater than one. 

Such lengthy transmissions are particularly vulnerable to acceleration dis- 

tortion from targets with highly nonlinear trajectories.   Thus, even if T and 

ß are zero (corresponding to perfect velocity and time hypotheses) in (5.11), 

the €-term may be large enough to make y (0,0, €) < < v (0,0,0). 

If a system is designed expressly for the detection of constant velocity 

targets, then it is explicitly assumed that f = 0 and implicitly assumed that, 

should accelerating targets actually be encountered, v (0i0if)  =\ 

(0,0,0) ^ v (O. !) for a11 possible €.   But if the implicit assumption 

proves untrue, then an accelerating target may not be detected at all, even 

at close range! 

5.1.2   Acceleration Tolerance. 

For receivers of limited complexity, the mismatch caused by ac- 

celeration should be minimized in order to insure the applicability of a linear 

trajectory assumption.   That is, a class of acceleration tolerant waveforms 

should be found.   A successful approach to such a problem has been to use 
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the origin properties of the ambiguity function.   The same method will now 

be used to simultaneously optimize doppler and acceleration tolerance. 
/ 

For combined doppler and acceleration tolerance, one seeks a signal 

such that acceleration sensitivity, as indicated by the quantity 

LcxIiu)(0'0'€)|        ="  /tN1)!2*-  /  t2u(t)u*'(t)dt 

2 2 is minimized.   Constraints include y   (3.18b), D   , and energy, where the 

2 2 
rj   and D   constraints insure doppler tolerance. 

If 

I2 

2 

+ 2     /t|u|2dt     Re< / ^uu+'dt 

= 4       /ta2dt       +       / t2e'a2dt 

is used as a measure of acceleration sensitivity, then the following functional 

must be minimized: 
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J(t,a,8,a) = 4 

LT T r   T        i l 
/"t2a2dt+/"t2e2a2dt-      /"ta2edt   2 ► 

T T 

+ lXE-V41/a2dt+Xt   A' 
2   2^ a   dt    . 

The above functional is essentially the same as the functional (4.67), 

except that Lagrange multipliers are used for different quantities.   The answer 

is thus the same as that obtained in (4.82) and (4.83), i.e., 

a(t)  = kt"1/2Jp03t1/2) 

e(t)  =  (kj/tj+kg 

This development shows that the extra constraint (4.66) used to derive 

the cruising pulse of Lasiurus borealis is, in effect, a condition for accelera- 

tion tolerance.   It is apparent that Lasiurus must be careful about accelera- 

tion effects^ Figures 4.10 and 4.7 show the Lasiurus signal to be more than 

twice as long as the corresponding Myotis pulse.   As already mentioned, 

long-time-duration signals are vulnerable to acceleration distortion. 

1 
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The discussions associated with Figure 4.4 and Equations (4.29- 

4.35) demonstrate that two phase functions with equivalent doppler tolerance 

i properties are 

I e^t) = k1 log (k2t) or  e2(t) = k1 log (i-k2t) 

t with associated instantaneous frequencies 

e^t) = k^t or e2(t) -- (-k1k2)/(i-k2t)  . 

By Equation (4.66), it is evident that for a given amplitude the first 

solution (6 ) is more acceleration tolerant than the second (because of the 

2 •   2 
t   weighting factor of 6a   over the interval [0, TJ).   Although the derivation 

of the Myotis signal did not constrain acceleration tolerance per se, the sig- 

nal chosen by the bat is thus the more acceleration tolerant of two equally 

doppler tolerant waveforms. 

5.2       Distributed Targets. 

■ 

5.2.1   Narrowbandedness and the Point Target Assumption. 

1 
I 
I 
\ 

Distributed targets are objects which cannot be treated as planar 

reflectors of undistorted waveforms.   Before considering these generalized 
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targets, however, it is important to illustrate the need for such a considera- 

tion.   After all, many workable narrowband radar systems, all based on a 

point target assumption, have been successfully implemented. 

It would seem that the assumptions of narrowband signals and point 

targets are actually complementary ideas.   In other words, the narrowband 

assumption itself assures that most objects will behave as planar reflectors. 

The connection between the two suppositions can be understood by consider- 

ing the frequency dependence of target cross section for distributed targets. 

Hie basic frequency response behavior can be inferred from the frequency 

dependence of backscatter from a sphere.   The cross section is determined 

by Rayleigh's law at low frequencies and by specular reflection at high fre- 

quencies, where the radar cross section approaches the geometrical cross 

2 
section (IT r ) of the object [37]. A rough approximation to the frequency de- 

pendence of radar cross section for a sphere (based on Figure U, 1, p. 65, 

[37] ) is shown in Figure 5.1. 

Figure 5.1.      Approximate Frequency Dependence of Backscatter from a Sphere. 
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It is reasonable to assume that most other shapes have the property 

of asymptotically constant cross sections for large frequencies (a « geometrical 

cross section).   Consider, then, a narrowband signal (with high carrier fre- 

quency) superposed on such a curve, as shown in Figure 5.2: 

Figure 5.2.     A Narrowband Signal Superimposed on the Backscatter 
Graph of Figure 5.1. 

From Figure 5.2 it is evident that the target response is nearly flat over the 

frequency range of the narrowband signal.   Over the frequency interval of 

interest, a delta-function impulse response (frequency response = constant) 

approximates the true target response.   In the limit as bandwidth approaches 

zero, the distributed target behaves exactly as a point target, as will be shown 

in Section 5.5.   But as the signal becomes more widebanded and/or the carrier 

frequency decreases, the applicability of the point target assumption becomes 

progressively more questionable. 
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5.2.2   Echo Model for Distributed Targets. 

Consider now those targets whose cross sections vary with range in 

such a way that the targets no longer act as perfect mirrors.   As in linear 

system theory, one can begin by considering the impulse response of such an 

object.   That is, the signal is visualized as a very thin pulse that impinges 

upon the target and gives rise to a characteristic response.   This response 

must be described in terms of some reference time t   = R /v.   R   is taken r      o o 

to be the range of the point of first reflection, i.e., the part of the stationary 

distributed target closest to the transmitter.   The situation described above 

is illustrated in Figure 5.3. 

o(t) IM PULSE-LIKE 
PLANE WAVE 

Ro t   *t' 
t   = -w- r 
r      v 

t = R/^ 

Figure 5. 3.      Reflectivity vs. Time. 
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The impulse-like signal is illustrated in Figure 5.3 as a vertical line 

which sweeps across the target from left to right, generating reflections as 

it goes.   The impulse's reflection from the object at some time t   + t' will 

take t' seconds to reach the reference plane t .   Thi» reflection is there- 

fore delayed, relative to the reflection at t   , by 2t, seconds.   This delay, 
r 

which occurs for all t' , will make the time duration of the impulse response 

twice as long as (length of target)/v.   Thus if the target's impulse reflectivity 

as a function of distance is a(R) , then the impulse response c(t) may be 

written: 

c(t)   =  a(R/2v)    . (5.13) 

To reiterate, the impulse response c(t) may be viewed as target reflectivity 

stretched (time-scaled) by a factor of two, the stretching caused by the round 

trip to each reflection point and back to the reference plane. 

Assuming that the responses of a sequence of weighted pulses can be 

superposed, the resulting echo has the form: 

u(t)   =  ]5\ 0(1-1^)   Z^r(t)   = Y  a^t-l^) (5.14) 
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The continuous version of this relation is the well-known convolution equa- 

tion of linear system theory: 

r(t)  =   /*u(T) c(t-T) dr    . (5.15) 

Since a point target is assumed to reduplicate the incident signal, its 

impulse response would be 

c(t)  = ö(t);    r(t) =  u(t)    . (5.16) 

A constant velocity point target would then be characterized by the kernel 

1/2 . 
s        Ö(st-T): 

f^.J/2.^^^  .  .1/2 

r(t)        f u(T) [s1/2 c(st-T)] dT 

r(t)  =    /u(T) [s '    0 (st-T)] dT  = s '  u (st)    . (5.17) 

The analogous return from a moving distributed target would then be 

=  /u(T) 

y [s1^ (8t-T)] c(T) dT    . (5.18) 

All the echoes described above are referenced to time t    (Figure 5.3). 

The function r(t-2t ) describes the echo as seen by the receiver (assuming 

that the signal was transmitted at time t = 0). 
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5.2.3   Target Impulse Response. 

5. 2. 3.1 A Priori Knowledge of Impulse Response. 

There are some detection problems for which one knows (with a high 

degree of certainty) the shape of the distributed target as seen by the radar/ 

sonar.   For incoming torpedoes, missiles, or mortar shells the shapes are 

all basically "conical sections nose-on" [34].   Sometimes the general shape 

of an oil-bearing geological formation is known.   If one were designing a 

passive sonar navigation buoy, cylindrical or spherical symmetry would 

assure an aspect-invariant, known impulse response. 

111? advantage of a priori knowledge about a target's impulse response 

will become evident in Sections 5.3 and 5.4; the design of optimal signals for 

maximum reflected power and energy depends upon knowledge of the target. 

5.2.3.2 Estimation of an Unknown Impulse Response. 

In order to estimate a target's impulse response, one can visualize 

a processor that correlates the echo with synthesized echoes from hypothetical 

targets.   The output of such a correlator would have the form: 
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(6) 
*uu     (T' V 8' V c' Ch) 

=  (88h)1/2H   /u(x) ch l8h(t-Th)-x] dx J Ju(y) c[8(t-T)-yl dy 

* 

dt 

-1/2 
=  [(S8h)    / /2IT1 f |U(w) |2 C (w/8 ) C*(üJ/8) e"iw(Th"T) dw 

(5.19) 

where c. , s, , and T,   are hypothetical quantities and C(ü;) i8 the Fourier 
h    h h 

transform of c(t). 

If one were using a conventional processor (point target model) to 

detect the return from a distributed target,  c   would be an impulse and the 

correlator output would be 

(ss r1/2 

X
uu(6) (T'  V B' V C' Ö(t))  = ~\ /lU(a,) |2 C*(a)/8)e-1a,(Th-T)da;. 

(5.20) 

As in the case of accelerating point targets, a processor designed to receive 

only time compressed versions of the transmitted signal may not delect a 

target whose transfer function C(aj) deviates significantly from a constant 

over the signal's passband (even though T.  = T, s   = s).   Equation (5.20) 
h n 

thus provides a mathematical basis for the discussion in Section 5.2.1 (con- 

necting narrowbandedness with the point target assumption). 
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If one insists upon using a conventional receiver (i.e., a bank of 

filters matched to doppler compressed versions of the transmitted waveform) 

with a distributed target, then it will be of interest to find a signal which 

maximizes the function 

I Xuu
(6) (T.  T; S,  8; C,   6(t))  |2    =    \ Ju(t) [Ju(X) C(t-X) dx]* dt   f      . 

(5.21) 

Expression (5.21) is the magnitude-squared output of a correlator that has 

correctly hypothesized range and velocity, but which hypothesizes a point 

target when in fact the target is distributed.   By the Schwarz inequality, 

(5.21) is maximized (for unit energy signal and echo) if 

-  J   u(x Xu(t)   -    /   u(x) c(t-x) dx    . (5.22) 

For time limited signals, (5.22) is a homogeneous Fredholm equation.   The 

equation will be further investigated in Section 5.5. 

5. 3       Signals for Maximum Echo Power. 

In order to receive   a waveform r(t) with maximum instantaneous 

power P   , the quantity 
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max  P    = max | r(t) |     = max | /u(T) c(t-T) dT | (5.23) 
t        r t t     J 

should be maximized.   But 

|  /u(T) c(t-T) dT |2 s j\ u(T) |2 dT j\ c(t-T) |2 dT (5.24) 

by the Schwarz inequality, with equality only if 

U(t)   =   kc(T-t); U(t+T)   =   kc(-t)     . (5.25) 

Assuming unit energy normalizations for both u(t) and c(t) , the left 

side of (5.24) attains its maximum value of unity when (5.25) is satisfied. 

The translation T in (5.25) has no effect upon the shape of the waveform, 

so that, without loss of generality, the condition (5.25) for maximum in- 

stantaneous echo power becomes: 

u(t)   - kc(-t)    . (5.26) 

As an example, consider the phenomenon of constructive interference 

between two pulses.   The target of Figure 5.3 is in this case taken to be two 

planar discontinuities, each with the same reflectivity (Figure 5.4). 

If the signal is matched to the target in the sense that 
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SIGNAL TARGET 
t- 

Figure 5.4.     Maximization of Reflected Power from a Target 
with Two Planar Discontinuities. 

u(t)   = kc(-t)  = ka (-R/2v) (5.27) 

then it is evident that the signal will be as shown in Figure 5.4.   The reflec- 

tion (disregarding multiple echoes caused by reverberation between the two 

discontinuities) will consist of three pulses, with the second being twice as 

large as the other two because of constructive interference.   Such a response 

clearly has the maximum possible power relative to any two-pulse signal that 

impinges upon the target of Figure 5.4. 

It is also possible to illustrate constructive interference by means of 

Altar's trajectory diagram.   A motionless target consisting of two discontinuities 

would appear on the trajectory diagram as two parallel horizontal lines (Fig- 

ure 5.5). 
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Figure 5.5.      Trajectory Diagram Interpretation of Figure 5.4 

If the time between trajectories is again d , then the signal pulses are again 

separated by 2d , so that the second received pulse (#2 in Figure 5.5) is the 

superposition of two reflections. 

I 
i 
I 
I 
I 
I 

To achieve maximum instantaneous reflected power, one sees that 

the signal must be matched to the target.   This matching requires a priori 

knowledge of target impulse response, and suggests the need for an adaptive 

system that changes its transmitted signal as better estimates of target re- 

sponse are obtained. 
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5.4       Signals for Maximum Echo Energy. 

For a point target, th« expected maximum signal power to noise power ratio 

at the output of a matched filter is 2E/N , where E is signal energy and N 
o o 

is average noise energy.   It is therefore important to receive a high energy 

echo from the target for conventional matched filter processing. 

For maximum returned energy [29,30] one must maximize / | r(t) |   dt. 

But since convolution in the time domain is the same as multiplication in the 

frequency domain, (5.15) gives 

r(t) ^U(a;) C(üJ) (5.28) 

where " ♦—• " denotes a Fourier transform pair, so that, by Parseval's 

theorem, 

/|r(t) |2dt   =   (1/2*) /|U(a;) C(aj) |2 dw 

=  (1/2*) A fu(x) e'jü;Xdx] [ fu*(y) eju,ydyl |C(a,') |2 dw 

= J f u(x) u*(y) [{1/2*) J | C(üJ) |2 ela5(y"X)da'l dx dy 

= 1 I   u(x)u*(y)Rc(y-x)dxdy    , (5.29) 

where R (T) is the autocorrelation function of the target impulse response. 
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Letting 

f(y)  =   /u(x) R (y-x) dx (5.30) 

one has 

J|r(t) |2dt  =   fu*(y)f(y)dy (5.31) 

which is maximized (by the Schwarz inequality) if 

f(y)   = ku(y) (5.32) 

or 
CD 

ku(y)   =     A u(x) Rc(y-x) dx    . (5.33) 

-00 

If u(t) is assumed to be time limited to [0, T] , then Equation (5.33) 

becomes a homogeneous Fredholm integral equation whose solutions are the 

eigenfunctions of R .   For a point target, 

R  (y-x)   =   ö(y-x) (5.34) 

and (5.24) is identically satisfied for all admissible signals. Thus a point 

target does not favor one signal over another as far as returned energy is 

concerned (as one would intuitively expect).   A distributed target's shape, 
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hofwever, determines both energy and maximum power of the echo for a given 

transmitted waveform. 

Theorem:   The signal that maximizes the energy of a given target's echo is 

ulso the signal that results in an absolute maximum of v (T, s, c), the 

distributed target ambiguity function (5.19).   This signal satisfies the integral 

Equation (5.33). 

Proof;  By the Schwarz inequality, v* ' as given by (5.19) will be maximized 

if a = a., T = T .   Then 

Xllu
(6) (0, 1. c)   =   (lAr) f |U(üJ) C(u>) |2 da; (5.35) 

But (5.35) is identical to the right hand side of (5.29), so that the signal which 

maximizes the maximum value of the distributed target ambiguity function 

X (T, s, c) is (not surprisingly) the same signal that maxlmizeR the 

energy of the echo.   QED. 

There exists a special case for which (5.33) and (5.22) are satisfied 

by the same (non-causal) function: 

Theorem:   If there exists a function u(t) such that: 

(1)       u(t) = u(-t)       and 
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/u(x) C(t-J (2)       X u(t)   =   I u(x) c(t-x) dx    , 

then this function also satisfies the relation 

2       r 
X   u(t)  =  I u(x) R (t-x) dx    . 

Proof;    /u(x) R (t-x) dx   =   /u(x) [ / c(y) c(y4t-x) dy ] dx 

=   / c(y) [ f u(x) c(y+t-x) dx ] dy 

= X   /c(y) u(y4t) dy       by (2) 

= X J c(y) u(-y-t) dy     by (1) 

= X2 u(-t) by (2) 

= X2 u(t) by (1).   QED 

The above theorem is in fact a special case of a general result for 

iterated kernels, provided that c(t-x)  = c(x-t),  i.e.,  c is a real, Hermitian 

kernel. *  The iterate of such a kernel is 

*The condition u(t)   = u(-t) implies that Ju(x) c(t-x) dx   = J" u(x) c(x-t) dx. 
From this it follows that c(t-x)   =  c(x-t)  + f(x,t) where J u(x) f(x,t) dx = 0. 

! 

I 
I 
I 

. 



137 

c (t-x) =    /c(t-y) c^y-x) dy   = y c(y-t) c(y-x) dy 

J c(y) c(y+t-x) dy   = R (t-x)    . 

It is a well known result [32] that if x   is an eigenfunction of K with 
n 

2 
eigenvalue A.   , then x    is also an eigenfunction of K   with eigenvalue 

2 
X     , provided K is a Hermiuan kernel. 

It may be possible, then, to find a single waveform which maximizes 

correlator output when either distributed targets or point targets are hypothesized. 

It would appear from (5.22), however, that this signal is dependent upon c(t), 

so that one must hypothesize c(t) in any case, in order to generate the wave- 

form.   Only if a (distribution tolerant) signal exists such that (5.22) holds for 

any c(t) will no distribution hypothesis be necessary. 

5.5       Distribution Tolerant Signals. 

The eigenvalue equation (5.22): 

00 

Au(t)   = J    u(x) c(t-x) dx (5.22) 
»ÖD 
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is in fact a partial definition of distribution tolerance, since it defines a 

waveform that reproduces itself upon reflection from the target c(t). If 

(5.22) were true for any c(t) , then u(t) would indeed be distribution tolerant. 

Van Trees [2] has demonstrated that any complex exponential function 

exp (jWjt) will satisfy (5.22).   That is, 

X e^i1  = /   ej V c(t-x) dx    , 

or 

A.   =    /*   e~iüJi(t"X) c(t-x) dx   =  C(w.)    . (5.36) 

] -- 
The value of X corresponding to the solution with frequency w   is the 

- 

Fourier transform C(a;) evaluated at a; = u.. 
i 

Equation (5.22) does not take account of the fact that both c(t) and 

u(t) are generally time limited functions.   Accordingly, the limits on the 

integral in (5.22) are not really infinite, so that the change of variables in 

(5.36) no longer produces a constant on the right hand side when time limited 

functions are used. 

There are several ways [2, 23, 31] to solve the equation 



I 

I 

I 

I 

I 

! 

I 

! 

! 

I 

I 
1 

139 

T 

\ u(t)   = J     u(x) c(t-x) dx    , (5.37) 
o 

the simplest (given access to a computer) probably being the method that wiU 

be used in Chapter VI of this dissertation, i.e., the utilization of a set of 

orthonormal components whose coefficients must satisfy a matrix characteristic 

equation. 

An eigenfunction for a specific value of c(t) , however, is not what is 

needed for distribution tolerance.   What is really required is a solution which 

at least approximately satisfies (5.37) for all c(t) , just as exp (jw.t) satisfies 

(5.22) for all c(t). 

Many distributed targets can be described as arrays of point targets. 

The impulse response of such objects may then be written as 

N 

c(t)  =   ^    ^^"V    • <5-38) 
n = 1 

Perhaps an approximate solution to (5.37) can be found for the important 

special case (5.38). 
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The trajectory diagram and inscribed diamond construction technique 

were helpful aids to the derivation of doppler tolerant waveforms.   The same 

methods will also prove helpful for the distribution tolerance problem.   In- 

deed, the relevance of these diagrams to distributed targets has already been 

demonstrated in connection with constructive Interference (Figure 0.5). 

For diagrammatic simplicity, let N = 3 in Equation (5.38).   The 

trajectory diagram representation of the target (5.38) is shown in Figure 5.6. 

The inscribed diamond construction technique then leads to a network of con- 

struction lines as illustrated. 

R(ti 
V 

d2 
i 

/r\/r\t/
r\m 

\ I XXxXX 

/^§S\ 
T^ 

Figure 5.6.     Approximate Waveform Reduplication for an Array 
of Stationary Point Targets. 
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The distribution accepting signal is in this case a periodic signal with T = 2d , 

The target in Figure 5.6 is obviously contrived; d   = 2d .   But for an ar- 
1 •- 

bitrary number of reflectors at /arious distances d , d , d , . . ., d 
l     &     «5 n 

from each other, one would simply have T = 2d , where d   is a number 

such that each of the Id,, d.., . . ., d   ] is an integer multiple of 2 d .   A 
1     2 n o 

signal whose basic form is unaltered by the distributed target (5.38) has thus 

been graphically derived. 

If the signal must be time-limited to [0, T ] then the derivation sug- 

gests that the simplest signal to use would be a sinusoid with zeroes at t = 0 

and t = T .   Furthermore, if the spacings d,, d0, . . ., d   are unknown 

a priori, then the number d   should be made as small as possible to increase 

the likelihood that each of the d . cL, . . ., d   is an integer multiple of  2 d . 
1    z n o 

That is, the period T = 2d   should be made as small as possible; the signal 
o 

should be a time-limited sinusoid with as high a frequency as is practicable. 

In other words, the distribution tolerant signal is a quasi-monochromatic 

sinusoid with period T much less than time duration T .   As T0 is allowed 

to become large and/or T is made very small, the signal spectrum becomes 

increasingly narrowbanded, approaching the solution exp (j^.t) as a limiting 

case. 
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In terms of the convolution Equation (5.15), one sees that if a peri- 

odic function u(t) is convolved with a "comb" of impulse functions, u(t) will 

indeed retain its basic shape provided each tooth of the comb is separated by 

an integral number of periods.   If u(t) is time limited, distortion will occur 

near the endpolnts of the reflected waveform; this distortion will appear as 

discontinuous changes in amplitude.   These sudden amplitude changes will 

take place at the zeroes of the waveform, so that the reflected signal will 

still be a continuous function of time. 

If the limits in Equation (5.37) were written as [-T /2, T /2], then 

a reasonable solution to the above problem would be a time-limited cosine, so 

that u(t) = u(-t).   This waveform would then (approximately) satisfy the two 

conditions of the iterated kernel theorem in Section 5.4, implying that the 

waveform is not only distribution tolerant, but also that it provides for maxi- 
- 

mum energy return. 

5.6       Target Description Capability. 

i 

Equation (5.15) can be written in terms of Fourier transforms as in 

(5.28): 

! r(t) — CM U(u;) (5.39) 

I 
I 
I 
I 
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where C(aj) —' c(t) and U(u)) *-* u(t),  the " *-• " denoting a Fourier trans- 

form pair. 

It is immediately obvious from (5.39) that if the signal transform 

U(u)) is zero (or indetectably small) over some frequency interval, then the 

echo C(aj) U(ü;) will provide no information about C(ü;) over that interval. 

This observation is related to the concept of a signal's information-carrying 

capacity.   The relation is easily recognized when one interprets the function 

U(a;) as a channel through which the function €((<;) is being transmitted.   For 

a given time duration, the capacity of this channel varies directly as its 

bandwidth [49],   If the signal-channel U(a3) is to have large capacity to carry 

information about the target function C(u)), then U(ü;) must be widebanded. 

i i2 The power spectrum  | U(aj) |    is the transform of the signal's auto- 

(2) 
correlation function x (T, 1).   This again implies that widebanded signals 

are suitable for target characterization. 

It was shown in Chapter III that signal bandwidth is indicative of range 

resolving ability.   Range resolution, in turn, is intimately related to the 

problem of distributed target characterization.   Range resolution describes 

the ability of a signal to distinguish between two point targets at the s ime 

velocity but with slightly different ranges.   It follows that range resolving 



144 

t 

I 
I 
I 
I 

capability would also be useful to describe a target that is distributed in 

range, especially if such an object were represented as an array of point 

targets.   By the origin properties in Chapter III and the uncertainty relation 

(Appendix C) one sees that range resolvent signals are necessarily widebanded. 

The above arguments demonstrate the need for wideband signals if 

one seeks an accurate description of target impulse response.   An ideal sig- 

nal for this purpose is, of course, the impulse itself (U(a;) = 1).   Unfortunately, 

peak power limitations often forbid the transmission of any actual signal that 

approximates a unit-energy impulse.   The alternative is to achieve wide- 

bandedness by drastic, sudden changes in the amplitude and/or instantaneous 

frequency of u(t). 

5.7       Relations Between Doppler and Distribution Tolerance, Resolution, 

and Target Description Capability. 

In Section 5. 6 it was shown that range resolution and target descrip- 

tion capability are related concepts which exact similar requirements of the 

radar-sonar signal.   Similar relations exist between these and other wave- 

form design concepts.   In fact, it would seem that many radar system require- 

ments (and their associated demands upon waveform characteristics) can be 

categorized under one of two signal types: very narrowband or very wideband. 
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The very narrowband (quasi-monochromatic) signal has appeared in 

several contexts.   In Section 3.11 it was shown that such a waveform is 

sufficient (but perhaps not necessary) for good velocity resolution.   (The 

same result will reappear in the next chapter as an idealized solution of a 

system optimization algorithm.) It was demonstrated in Section 5.5 that a 

quasi-monochromatic signal is also distribution tolerant.   On the other hand, 

the target description capability (a concept antithetical to distribution 

tolerance) is very poor, as is range resolving capability and doppler tolerance. 

The very wideband signal, on the other hand, has been found to possess 

good range resolving ability and target description capability.   Furthermore, 

those wideband signals that are doppler tolerant should also be useful for tar- 

get characterization when correlation processing is used.   The connection be- 

tween doppler tolerance and target description capability is clarified by the 

(2) 
identity (3.113), which may be rewritten in terms of x (T, s): 

Vc,,.u.o<2) <T' Sl  =  sl/\„(2) <T' ■" ^      <2) <T' S>    •        <5-40> 
n h 

By Equation (5.19), 

(2) (6) 
>W,u*c      (T'S)  = ^uu     <T' S' C' V n 

(5.41) 

so that 

i. 
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Xuu
(6) (T.  S,  C.  Ch)    =   81/2/Xuu

(2) (X.  8)XC  c
(2) (T-X.  8)dx   (5.42) 

J h 

If the radar-sonar system forms the function | x I   . then it will gain 

(2) i       (2) 
little information about x (T, s) over an interval of s where  | JC. 

(T, s) |    is small.   That is, if  | v    l ; (T, s) ^ is indetectably small (below 

(2) 
noise level) over a given s-interval, then T-convolution of Y with an 

(2) 
arbitrary function x (Ti 8) wiU generally result in another function that 

h (2) is small over the same s-interval* (assuming that max (x } = 1). 
h        (2) 2 Since doppler tolerant sisals maintain a large amplitude of  | v    ^ ' (T, s) | 

over an extended domain in s, one expects such signals to be comparatively 

effective in conveying target descriptions to the receiver. 

For comparison, consider again the quasi-monochromatic, distribu- 

tion tolerant, doppler resolvent waveform.   Distribution tolerance implies 

that the signal reproduces itself no matter what the target from which it is 

reflected.   Such a signal does not gain any information about target distribu- 

tion; it merely tells the radar that a target is present and presents some 

♦The problem is, in a sense, the converse of the usual SIR clutter rejection 
problem to be defined in Chapter VI.   For a distributed target, important 
information may be contained in the "clutter"; this information should not be 
destroyed by the correlation process. 
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indication of target range and velocity.   Such behavior (i. e. , good doppler 

resolution associated with poor ability to describe the target's impulse 

response) can be interpreted as a simple manifestation of Equation (5.42). 

That is, if x( V.s ) « 0 for s   / 1, then v (6\T, s  , c, cj « 0 for s   M, 
uu o' o ^uu oh' o 

(2) 
and little information can be gained about the behavior of XckC    (r.s) for s / 1. 

It has already been established that range resolution is another helpful 

property for the description of distributed targets.   In terms of Equation (5.42), 

(2) 
the T-integration will destroy the fine-structure of Xcuc   C"»8) unless 

(2) X     (T ,s) is very narrow in range at each value of s.   That is, a razor-blade- 

shaped signal ambiguity function should result in an accurate target description. 

Such a razor-blade function is associated with large bandwidth, good doppler 

tolerance, and good range resolution. * 

*An extreme (and impossible) example of a razor-blade function would be 

Xuu^'^ " ö<^-   Thenby (5-42). s'^Xuu^'8»0.^) =Xchc(^T.s)' 
the original target auto-ambiguity function.   A signal whose ambiguity function 

approaches the razor blade is u(t) =      „K sin(irt/T)/(7rt/T) =       _ K^t/T)"1'2 

1-»U T-» Ü 

J1/2(7rt/T).   This is one of the doppler tolerant waveforms derived in Chapter 
IV.   (If C(u)) is band limited, it is unnecessary to take the limit of T-. 0. ) 
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Although a range resolvent, doppler tolerant (razor blade) signal 

ambiguity function gives more information about x       (T> s) than a range 
ChC 

and doppler resolvent ("thumbtack") ambiguity function, the relevance of 

this information is not immediately obvious.   A thumbtack signal function 

/ev /ox 
will make v equal to the cross correlation function x (T» !)• 

(2^ h 

For c (t) = 0(t), x (Tf 1) equals c* (T), the conjugate of target impulse 
n 

response. 

For a distributed target whose parts all move at the same radial ve- 

locity,  c(T) is indeed all the information one needs.   But because of radar- 

sonar beam spreading, almost any moving rigid target with large range- 

extent will possess parts with differing radial velocities. *  This fact ie used 

to enhance the resolution of side-looking radars [56].   In addition, targets 

with moving parts (discussed in the introduction to Chapter IV) will often 

have a characteristic "signature" when viewed as functions of both range 

and velocity.   For many practical situations, then, a two dimensional re- 

presentation of the target ambiguity function is a helpful description of the 

object. 

♦This phenomenon occurs for translaüonal motion with a non-radial component. 
A rotating rigid target would, of course, also give rise to velocity differences. 
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It seems evident that the extent to which a signal can become simul- 

taneously range resolving and dcppier tolerant determines- the accuracy with 

which the correlation processor can describe a target.   By Equation (3.101), 

Section 3,6, a given doppler tolerant signal can b   made more range resolvent 

(without sacrificing doppler tolerance) by simply compressing the waveform 

in time. 

For a given peak power, noise level, and target cross section, the 

extent to which the doppler tolerant signal can be compressed depends upon 

how much the signal energy can be reduced.   This, in turn, depends upon 

target range.   For a peak power constraint, the extent to which the doppler 

tolerant waveform can be compressed depends upon the "aoge of a specific 

object; the closer the target, the more compression is allowed (at a sacrifice 

of signal energy). 

The associations established in this section are exhibited in 

Table 5.1. 

The Horseshoe bats (e.g., Rhinolophus ferrum-equinum and Rhinolophus 

euryale) provide an interesting commentary on the above arguments.   The 

pulses of Rhinolophusf as measured by H. U. Schnltzler [50], consist of a 
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Table 5.1.       Two Types of Signals with their Associated Properties 

Signal: Quasi-Monochromatic       Time-Compressed 
Doppler Tolerant 

(Centralized BW) 
(Carrier Freq.) 

small (narrowband) large (wideband) 

Range Resolution: 

Doppler Tolerance: 

poor 

Velocity Resolution: good 

poor 

Distribution Tolerance:   good 

good 

range dependent1'' 

good 

poor 

Target Description 
Capability: poor good 

♦See the discussion associated with Figure 4.1. 
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long, constant frequency (CW) signal followed by a rapid decrease of fre- 

quency (FM) at the very end of the pulse.   When the bats are at rest or 

cruising (free flight), the FM part of the pulse has low intensity compared 

with the CW part.   But when the bats are landing or flying through an ob- 

stacle course, the intensity of the FM part is increased. * 

The interpretation of this behavior in terms of target characterization 

is straightforward.   For resting and cruising situations, one is interested in 

initial detection of a target, regardless of its distribution.   Hence, a distribu- 

tion tolerant signal is permissible.   But when landing, avoiding obstacles, or 

closing in on prey, target shape should be investigated in some detail.   For 

these cases, a signal with large information-carrying capacity should be 

accentuated. 

*The use of FM versus CW as described here seems to be typical of all 
species: "As with all other bats yet studied, difficult maneuvers and demand- 
ing situations elicit shortened pulses of the "chirp" or frequency modulated 
pattern.   But when flying at moderate altitudes in relatively straight lines, 
longer pulses often show considerable periods with a nearly constant, or 
slowly changing frequency.   Is different information being extracted from the 
environment by these different types of orientation sounds ?" - from D. R. 
Griffin [33] (underlining added). 

1 
I 
I 
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For correlation processing, the target-describing signal should be a 

time-compressed, doppler tolerant waveform.   Such waveforms are indeed 

observed for bats of another species, Myotis lucifugus, which seem to trans- 

mit time-compressed versions of Figure 4.7 as thoy pursue their prey [27], 

These waveforms become progressively more compressed as the bat nears 

his target, a phenomenon that has been justified by assuming a peak power 

constraint. 

. 
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CHAPTER VI- 

OPTIMUM SYSTEMS FOR A CLUTTERED ENVIRONMENT 

This chapter considers wideband radar-sonar operation in a cluttered 

or reverberation-prone environment.   Such a consideration leads naturally to 

the concept of discrimination against spurious returns (as well as uncorre- 

lated noise) while seeking to detect a target.   This concept is expressed 

quantitatively in two ways:  First, in terms of a constrained Schwarz inequality 

which seeks a signal whose target echo is easily distinguished from spurious 

echoes; second, in terms of a signal-filter pair to maximize signal-to- 

interference ratio (SIR).   For point targets, these two concepts are equiva- 

lent.   This will become apparent when f.'ie constrained Schwarz inequality is 

used as an alternate means of deriving the optimal signal-filter pair for 

maximum SIR- 

The SIR problem has recently been considered in detail by three 

groups of authors:  (1) L. J. Spafford and C A. Stutt [38], [39], [40]; 

(2) W. D. Rummler [41]; and (3) D. F. Belong, Jr. and E. M. Hofstetter 

[42] , [43].   All three groups have been concerned with narrowband signals. 

The major contribution of this chapter will therefore lie in the generalization 

of SIR optimization ideas to wideband analysis. 
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6.1 Applicability of Existing Methods. 

6.1.1      Representation of Noise. 

Both the Spafford-Stutt and Delong-Hofstetter approaches use a narrow- 

band complex envelope representation of white Gaussian noise.   This repre- 

sentation has been discussed by C- W. Helstrom [44].   The conceptual basis 

of the argument is that, for a narrowband signalt one cai envision passing 

the signal through an ideal band pass filter without significantly affecting 

the waveform, provided the passband of the filter is wider than the signal's 

bandwidth.   When this operation is performed on signal plus noise, the 

resulting noise power spectrum is made narrowbanded, i.e., it has support 

only in a relatively small band of frequencies surrounding a large carrier 

frequency. 

For a wideband approach, the above reasoning is usually inapplicable. 

We shall therefore conceive of white noise in a more general sense.   If it should 

become necessary to use energy-limited noise in wideband theory, the ideal 

noise-shaping filter would be low pass with cutoff above the highest significant 

signal frequency. 

For real Gaussian noise n(t) with a constant power density spectrum 

height of N /2, the expected noise response power of a filter with unit energy 

impulse response v(-t) Is: 
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E { | Jv(-T)n(t- T) dT |2| = jJv(x)E {n(t+ x)n*(t+ y)) v *(y) dxdy 

= jfjfv(x) [(No/2) 6(x - y) ] v*(y) dxdy 

= No/2 f |v(x) |2dx = No/2 . (6.1) 

6.1.2     An Invariance Property of the Ambiguity Function. 

Both the Rummler and Delong-Hofstetter approaches use an invariance 

property of  |x     (T,^) |   .    The algorithms of these two groups depend upon 

the assertion that 

lx^V.«)|2=|x^(r.*)|2 (6.2) 

where u(t) = u(-t) and v(t) = v(-t). 

Relation (6.2) implies that the signal and filter may be interchanged 

without changing the SIR.   For the wideband function, 

X^iT.s) =s /Z|vH)u*[8(-t-T)]dl 

= s"1^2 f u*(t')v(t7s + T) dt' 

= X1
(

1f
)*(sT, 1/s) . (6.3) kuv 
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Although the right-hand side of (6. 3) resembles the left-hand side of 

(3.146A), the latter equation was formulated for auto-ambiguity functions.    For 

cross-ambiguity functions: 

(2)* . (2)* 
kUV       ^ *       •       . Ayu 

Thus (6. 3) is not equivalent to (6.2). 

The wideband equivalent of (6.2) is based on more subtle transformations 

■j A) —1/2 
than simple time reversal.   If v(t) = s     v(-st) and u(t) = s      u(-t/s), then* 

IX^V-.^I^IX^V.S)]2   . (6.4) 

The optimization algorithms of Rummler and Delong-Hofstetter can be 

applied to wideband systems by using the above transformations.   The Spafford- 

Stutt algorithm is immediately made applicable to wideband problems by simply 

replacing \    ' hy \    '.   The Stutt-Spafford approach will be used in this 

dissertation. 

* This transformation was pointed out by an anonymous IEEE reviewer as 
criticism of a paper submitted to the information Theory Transactions. 
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6.2 Detailed Expression for the SIR. 

If the energy of the signal u(t) is unity, then the energy E   of the 
8 

2 
signal Au(t) will be A .   The power of the maximum filter response to such 

a signal is then 

|jAu(t)v*(t)dt|2 =A2|x^)(0,l)|2 = E8|X^)(0.1)|2 . (6.5) 

Having derived the signal and noise responses, it remains to find an 

expression for clutter response.   There is some evidence [45,35] that in 

many situations the clutter can be treated as a distribution of point targets 

whose positions and velocities are uncorrelated.   (One should note that such 

a model may be more attuned to mathematical convenience than reality.   In 

order not to overly complicate the initial development, this reservation will 

be saved for future discussion.   The present concern is with the conventional 

representation of clutter as developed by Delong and Hofstetter [42 ].) 

The clutter return r (t) is the superposition of returns from an array 

of point targets with various velocities and ranges: 

i 

V1) = E Wk^k^'V1 • (6-6) 
i,k 
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Here the delays T. and stretch factors s    are measured relative to the 

point target.   The a    are statistically independent complex random 

variables with uniformly distributed phases, so that [42] 

ECaik) =  0 (6.7a) 

Here p     may be thought of as a quantity proportional to the radar cross 

section of the (i,k)    scatterer.   The number of scatterers is assumed large 

enough so that the Central limit Theorem may be invoked, thus making r (t) 

a sample function of a Gaussian process.   The expected value of r (t) is zero 
c 

by (6. 7a).   By (6. 7b) and (6.6): 

Rr (t,t')   = E[rc(t)rcV)} 

= ^ pik8kut8k(t' VKCV1'"Tfl ' (6-8) 
i,k 

The development may be generalized to a continuum of scatterers by replac- 

ing jW   by integrals over T and s: 
1,K 
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R
r(

t.t')=       f    fp(T,8)8U[8(t-T)lu*[8(t/-T)]dsdT (6.9) 
C -J    $ 

where p(r,8) is the clutter probability density function. 

The expected clutter response may now be calculated in the same 

manner as the noise response in Equation (6.1): 

E{|Jv(-1)rc(t-T)dT|2|     =   jJv(x)E{rc(t+x)r*(t+y)}v*(y)dxdy 

=   rrv(x)Rr (y,x)v*(y)dxdy 
■'' c 

oo   CD r 1 A>     ^ ! 
=     j" JP( T, S)     8   ^    J V(X)U*[8(X - T) ]dx 

f v*(y)u[s(y-T)]dy drds 

=      J    rp(T.S)|x^)(T,8)|2dTd8.(6.10) 
-os   5 'VU 

Combining (6.1), (6.5) and (6.10): 

 E,lx>.»)l2  
SIR= 2——        (6.11) 

(No/2) || v(t) | 2dt + Ec JJp(T .8) Ix^T.i) |2dTds 
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where E   is signal energy, N /2 the amplitude of the noise power density 
s o 

spectrum, E   is clutter energy, u(t) is the signal, v(-t)the filter impulse 

response, and p(r,s) the clutter pdf. 

When E   = 0 and v(t) = u(t), 

SIR = SNR = 2E /N (6.12) so 

the well-known signal-to-noise ratio of matched filter theory. 

6. 3      Maximization of the SIR. 

6. 3.1   Time Domain Optimization. 

Using a variational approach, one f{rst seeks the optimum filter 

assuming that the signal is given.   Letting v(t)-.v(t) + CTJC1). where Tj(t) has 

piecewise continuous derivative, the signal-to-interference ratio becomes 

SIR<e>=-iÄ7) (6-13' 

where 

H€)=Eg\fxx{t)lv*(t) + CTj*(t)]dt|2 , (6.14) 

g(€) = (No/2) J |v(t) + €Tj(t) |2dt, (6.15) 

h(0 =EcJJjJsp(T,s)u[s(y + T)]u* [s(x+ T)] [V(X) + CT?(X)] 

[v*(y) + «Tj*(y)] dxdydrds . (6.16) 

. 
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Setting the first variation equal to zero, i.e., 

a/äc[SIR(c)l   I =0 (6.17) 
|c = 0 

gives 

{[g(f) + h(c)]f/(€) - f(c)[g/(C) + h'(c)]} I =0 
lc=o 

or 

^n.o = (SIR).[g'(C)-'. h^c)]! (6.18) 
€=0 

where 

f'(«)|        =2E8Itoj/u(t)CJ,u*(x)v(x)dx]tj*(t)dtj, (6.19) 

g'(c)|        «N0Rej/[v(t)]t»*(t)dt   , (6.20) 

hU)l        =2EcReH[^"sp(T,s)u[s(t+T)]u*[s(x+T)] 

v(x)dxdsdTjT?*(t)dt   . (6.21) 
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Substituting (6.19, (6. 20>, and (6. 21) into (6.18): 

E u(t) /"u*(x)v(x)dx = [(N /2)v(t) + E   /"H (t,x) v(x)dx]SIR (6.22) 
S        J O C J     \x 

where 

00      CD 

Hu(t,X)=     J"   r8p(T,S)u[s(t+T)]u*[s(X+T)]dsdT (6.23) 

Defining 

ß 5 

Ju*(t)v(t) dt 

SIR iVV • (6.24a) 

X ■ No/2Ec = [ 2Ec/No] ~1   = inverse clutter-to-noise ratio (6.24b) 

one has 

MU(t)=Xv(t) + j'Hu(t,x)v(x)dx       . (6.25) 

The solution of (6.25) for a given signal u(t) is a filter function v(t) which 

provides a local extremum of the SIR. 



163 
I 

Having derived the best filter for a given signal, it is clear that one 

can also find the best signal when the filter is given.   In order to do this 

(2) easily, change variables in the expression for X    (T,S): 

X^T.S) =8l/2/v(t)U* [S(t + T)]dt =s'1^ /vßtVs) - T]u*(t')dt'. 

(6. 26) 

Since    f |v(t) |   dt =  T |u(t) |2dt = 1, SIR(c) in (6.13) may be rewritten with 

f(0 =E8| rv(t)[u*(t) + eT?*{t)]dt|2 , (6.27) 

g(€) = (No/2)   f |u(t) + cr?(t) |2 dt, (6.28) 

h(C) = EcjJjJ(l/s)p(T,8)v[(y/8) - T]v*[(x/8)- T)] 

[u(x) + rTy(x)] [u*(y) + fTj*(y)] dxdydrds. (6.29) 

It follows that 

nv{t) =Xu(t) + / G (tlx)u(x)dx (6.30) 

vhere 

Crv(t,x) =   ff (l/s)p(T ,s)v [(t/s) - T] v* [(x/a) - T] dsdr.     (6.31) 
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Equations (6. 25) and (6. 30) are two simultaneous integral equations for the 

unknown optimal signal-filter pair.   Unfortunately, it is extremely difficult 

to combine the two equations and thus obtain a straightforward solution for 

u(t) and v(t).   But, if the equations are kept separate, it is possible to 

recursively solve for a locally optimum signal-filter pair given a particular 

starting signal (or filter). 

6. 3.2   Frequency Jcmain Optimization. 

It will be of interest to obtain the frequency domain version of the 

above derivations. The procedure is the same as above, except that, by 

Parseval's theorem, 

X^V.s) =(8'1/!2/27r)j'v(Cx))U*(w/s)e",a'Tdw (6.32) 

and 

j |v(t)j2dt = (l/27r)J|V(ü3)|2da;   . (6.33) 

Equations (6.14 through 6.16) are then: 

f(€) = Eg|(l/27r) JUWCV'VH fTj*(w)]da)|2, (6.34) 

g(c)=(No/2)(l/2ff)j'|V(w) + CTj(w)|2dü;   , (6.35) 

I 
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h(c) = Ec(l/27r)2 jYTJ    (l/s)p(T,8)U(y/s)U*(x/8)e"j(X"y)T 

[V(x) + €Tj(x)][V*(y) + eT?*(y)]dxdydTds (6.36) 

so that 

/iU(aj) = 27rAV(ü;) + j H^w.x) V(x)dx (6.37) 

where 

00        00 

H^w.x) =  j   r(l/s)p(T,s)U(w/s)U*(x/s)e":,(X"a,)TdsdT.       (6.38) 
0 

Finally, one solves for U(a>) given V(ü>) by writing 

X^)*(T'S)=(S    /27r) /u(cJ)V*(Sü))ej8ü;TdüJ (6.39) 

so that 

f(c) =E8|(l/27r) Jv*(a;)[U(üJ) + CT>(w)]daj|2 , (6.40) 

g(c) =(No/2)(l/2;r) J|U(w) + CT7(ü;)|2dw   , (6.41) 

h(e)=Ey(2*2||||sp(T.a)V(8y)V>x)ejS(X"y)T 

• [U(x) + CT?(X)] [U*(y) + fr?*(yflclxdydTds (6.42) 
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and 

fiV(u;) =27ÄU(w) + j Gv(u;,x)U(x)clx (6.43) 

where 

ret en 

r*/-.„vJs(x-W)T, Gv(w,x) =    j     r8p(T,8)V(8w)V*(8x)eJS(X"ü;'TdsdT. (6.44) 

-00     0 

Equations (6.37) and (6.43) provide a means of recursively solving 

for the frequency domain versions of the optimal signal-filter pair. 

6. 3.3   Alternate Approach. 

It has already been mentioned that, for point targets, a constrained 

Schwarz inequality yields a solution that maximizes the SIR.   It is important 

that such an alternate derivation exists, as it is very difficult to ascertain 

the sign of the second variation of the SIR.   Thus, without the alternate 

approach given below, one could never be certain whether the extrema found 

by the variational method were local maxima (rather than local minima). 

By obtaining the results with a Schwarz inequality, however, one is assured 

that he has indeed found necessary condition? for a local maximum. 

Given the class of signals such that   I | v(t) |  dt = 1 and the clutter 

/(2) 2 
P(T <s) | X     (T i8) |  dr ds, which is constrained to equal a small 

number (preferably zero), one seeks a function v (t) in this class such that 
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/2 v(t)u*(t)dt|   is a maximum.   Writing the clutter 

response as an inner product: 

/p(T.8)|x^)(T,8)|2dTds=Jv(t)f*(t)dt 

where  f*(t) =  rrrsp(T,s)u[s(y+T)]u*[s(t + T)] v*(y)dsdTdy . (6.45) 

According to Papoulis [36] , the solution is 

v(t) =k   u(t) + c/7Y"8p(T,s)u[s(t+T)]u*[s(y + T)]v(y)dsdTdy | 

= k[u(t) + c|Hu(t.y)v(y)dy]. (6.46) 

By proper choice of k and c, (6.46) can be made identical to (6. 25).   The 

other solutions can be obtained in the same manner. 

6.4       A General Method of Solution. 

Again following Stutt [39] andSpafford [' * j, the signal and filter 

functions are decomposed into a finite set of orthonormal basis functions: 

N 
^)= E^ (t) .   m^m m=l 

N 

(6.47) 

v(t) =  Th   (p   (t)    . f-   mvm m=l 
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It is important to realize that (6.47) is written not as an approximation but as 

I an equality.   In other words, the solution is restricted to only those functions 

which can be expressed as a linear combination of the N chosen basis func- 

tions.   The larger and more complete the basis, the bigger the class of 

functions that can qualify as solutions. 

The two-dimensional function H (t,x) in (6. 23) can be written: 

N 
H(t,x)5'Vc     <p   (t)<p*(x) . (6.48) 

m,n 

Then (6.25) becomes 

* E Vm(t) =X2: Vm(t) +     ^, Cmnbk^m(t)/<(X)^X)dx 

m m m,n,K 

T oa ](p (t) = yrxb +T, c   b ]«5 (t) t-* ^ mJVm ^-,L     m     *-'     mn nJvm m m n 

HSL    =\b    +  Y c      b       . (6.49) 
m        m      ^   mn n 

n 

(6.49) describes each element of the column matrix A in terms of the 

elements of the column matrix b and a square matrix C.   That is, (6.49) is 

equivalent to the matiix equation. 

/iA =XB + CB = [C +XI]B 

or 

B =M[C+XI]"1A . (6.50) 

'"For a given basis set, the accuracy of this approximation depends upon the 
clutter distribution. I 

I 
I 
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Similarly, if (6. 31) is written 

Gv(t'x)= E 6mn^m{t)K{X) ' (6-51) m,n 

then (6. 30) becomes: 

A =/i[D+XI]"   B. (6.52) 

The elements of C and D are obtained from (6.48), (6.23), (6.51) 

and (6.31): 

ckjl= ^"lyt.x^tXPjWdtdx 

CO     00 

=    ^  Vn    /rsP(T's)Ymk^''S)YniT,s)dsdT . (6.53) 
m,n -* Q 

dkl= //G
v(M)<Pk(t)<Oje(x)dtdx 

where 

= S   Vn    //(l/s)P(T's)xmk(T.8)xnV
T'8)dsdT (6-54) 

m,n -oo 

Ymk(T'S) ■/«PmC»(t+T)]^(t)dt (6.55) 

x
mk(T'8) "/^m^^"1"^^* • (6-56) 



170 

I 
I 

A general method of solving for an optimum signal-filter pair would 

then be to start with some arbitrary unit energy signal vector and to solve 

for the C matrix elements using (6.53).   Having found the components of an 

optimum filter via (6.50), the energy of this filter would be» normalized to 

unity and the components used in (6.54) to find the D matrix.   Using (6.52), 

another A vector would be determined.   The process would be repeated 

until the improvement in the signal-to-interferente ratio became negligible. * 

The SIR may be written**  [38]: 

SIR = A* [C + Al]'1 A(E /E ). (6. 57) 
s    c 

Equation (6.57) provides a convenient way to calculate the value of SIR at 

each stage of the iteration process. 

The signal-to-interference ratio is guaranteed to be larger or 

unchanged after each stage of the iteration.   This is because each stage 

finds a locally optimum filter (signal) vector given a particular signal (filter) 

*     The resulting signal and filter vectors would then be consistent with 
.  each other in terms of Equations (4.85 through 4.88). 

**   An asterisk, when applied to a matrix quantity, indicates the conjugate 
transpose of the matrix.   Equation (6.57) can be derived by solving 
(6.24a) for SIR and applying the condition (6.12). 
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vector.   Since the SIR is nondecreasing for every iteration, and since it is 

bounded above by the signal-to-noise ratio, the iterations must converge to a 

local maximum. 

6.5 Some Special Cases. 

Most solutions to the pair of integral equations (6.25) and (6.30) are 

best obtained by the iterative method implemented with a computer.   However, 

it is possible to solve a few special cases without resort to extensive compu- 

tations.   Since these solutions provide some insight into the workings and 

results of the general method, they will now be discussed. 

6.5.1     Clutter Uniform in Range. 

Suppose first that the clutter's probability density function is uniform 

in range:  p(T,s) = lim p(s)(l/2T)rect(T/T)t where 
T-»oo 

rect(x) = 
n,|x|<i 

10, |x|>l 

Such a situation could occur when a whole region (encompassing the maximum 

range of the radar) is enveloped in a dense fog;  Spafford has labelled this 

"weather clutter".   For this particular case, one can use the frequency 

domain equations developed in Section 6. 3.2.    Specifically, Equation (6. 38) 

becomes: 
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H (w,x) =   r(l/s)p(s)U(u)/8)U*(x/s)[lim(l/2T)    T e"j(X" ^^drlds 
X T-^co J 

= 2n f (l/§)p(8)U(w/s)U*(x/8)ds ö(x- w) (6.58) 

0 

and Equation (6.44) becomes 

OS 

G  (w,x) =27r rp(8)V(sw)V*(8x)ö(x-ü;)ds. (6.59) 

0 

From (6.37) and (6.43): 

V(w) = ^2*) Uico)  (6> 60) 

x + y"(i/8)p(8)|u(üj/8)rd8 

U(w)=     i^
2^) vw—   , (6.61) 

X +   rp(8)|V(8a;)|2d8 

Given U((j) and p(8) it is a simple matter to solve (6.60) for V((j).   Using 

this Vfco), a new and better U(w) can be found from (6. 61). 

As a specific example, consider the case of a motionless target (in 

. motionless fog): 

I 
I 
I 
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A. 

P(s) = 6(8-1)    . (6.62) 

Then 

V{u) =  mte* VM (6.63) 
X+|U(w)| 

Tt/   v     (M/27r)V(a;) 

X+|V(u;)r 

Substituting (6.63) into (6.64) gives the relation 

[\+|U(ü;)|2]2=(M/27r)2 

2 
or | U(a;) |   = (ß/2n) - X = constant 

so that, by (6.63), 

V(ü,'     \ + C(M/2ir)-X]     U(W, ' 

or 

|V(a>) |2 = |U(üJ) |2 = (/i/27r) - X = constant. (6.65) 

This says that the best signal for detecting motionless point targets in 

weather clutter has a uniform power spectral density (corresponding to an 

impulse-like autocorrelation function for large system bandwidth). 
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6.5.2     Clutter Near the Target (Resolution Problem). 

The following example illustrates the matrix computation and 

manipulation involved in the actual computer algorithm.   The waveforms 

are constrained only in energy, with the result that extremely high frequencies 

are called for in the solution.   The answer, in fact, is analogous to that found 

in singular detection problems  [2], wherein an obvious (and generally 

unusable) solution is obtained for a problem that is unrealistically formulated. 

Here one assumes that the time duration of the signal is much larger 

than the delay between target and clutter;  it is also assumed that clutter 

velocity is very near the target velocity.   If the clutter is concentrated at 

a single point on the (r,s) plane, this becomes a classical radar resolution 

problem. 

The upshot of the clutter-near-target assumption is that an approxima- 

tion may be made concerning the limits of the integrals Y.    (r ,s) and X,    (r,s) 

defined in Equations (6.55) and (6.56^.   Assume that the signal and filter 

functions are time limited to [-T,T].   Then 

(P    [s(t + T)]  $ 0 only if-T s s(t+T) ^ T 

or (-T/s) - T s t s (T/s) - T , (6.66a) 
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and 

Pm[(t/s) - T] » o for -T ^ [(t/s) - r]    s T 

ors(-T+ T) s t s S(T + T). 

! 

Equations (6.55) and (6.56) thus become 

b 
r y 

where ay = max f-T.(-T/s) - r} and b   = min fT.(T/s) - r 1 

and 

b 
x 

X   •^S)=   /     PfeWo    [(t/8).T] 
a 
x 

(6.66b) 

a ..      'm^-    "■>" (6.67) 
y 

mk--'- ]     PkWomL(t,8).rjdt (6.68) 

where a   = max [-T,S(-T+T)} and b   = min [T,8(T4-T)}. 
X X 

By Equations (6.53) and (6.54) it is apparent that, if p(T,s) is significantly 

different from zero only for T « T,S W 1, then little error will result by 

making the limits a ,b   and a ,b   equal to -T,T.   This is especially true xx       y  y 

if the tn   (t) are relatively smooth functions that go to zero at the endpoints m 

of the time interval. 
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Letting 

<pm(t) = (1/2T)1/2 eJ27rmt/T, t€[-T,T] (6.69) 

the clutter-near-target assumption allows an easy calculation of the C and D 

matrices when clutter is from a limited number of separated point targets: 

P(T,s) = £ p^ Ö(T - T.) 6(s- Sj) . (6. 70) 

Using the limits [-T,T] along with the basis functions (6.69) in the integrals 

(6.67) and (6.68): 

X  jr.s) =e-l27rmT/T S^Mm/s-k) 
mir      ' 27r(m/s - k) 

Y     (TfS)=eJ27rmsT/T  SÜLL^ms^kil 
mk' 27r(ms - k) 

Using (6.70-72) and (6.53-54), the elements of C and D are: 

E__ *     j27rs.T.(m - n)/T p.^s,   V1   a   a    eJ     j r ' 
i,J m,n 

Sin[27r(ms - k)]      Sin27r(ns  - i) 

'~2^ms  -k) *    2jr(ns  - £) (6,73) 

I 
I 
I 
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i,j m,n 

Sin [27r (m/s - k) ]       Sin 27r (n/s  - i) 

27r(m/8   - k) 27r(n/8   - X) 
(6.74) 

Now suppose that 

A* = [p,0,..-,0,l,0,-..,0] (6.75) 

where the nonzero element is the M    element.   The integer M is chosen 

as follows: 

Write the s. as rational numbers.   (This may be done with arbitra- 

rily small error because "between any two distinct real numbers there is a 

rational and an irrational" [46] .   Thus in a finite interval, no matter how 

small, around the true value of s   there is at least one rational number.) 

Then 

Sl =VV 82 = VV"' SN =Y2N-1/Y2N (6-76) 

where y  ,y ," • ,y      are integers.   Let M be defined as the product: 
1 A ^II 

M-W3-"r2N • (6-77) 
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With M so chosen, Ms   is an Integer (p) for all s    ]=if... ,N.   Also, M/s. 

is an integer (p.) for all s .   From this observation, with the vector A as 

defined in (6. 75): 

c.    = y p..s.6   .6     . (6.78) 

where the 6's are Kronecker delta functions.   It is obviously impossible 

that c     +0 unless k = je (or, more precisely, k = jj= u).   The C matrix has 

therefore been diagonalized.   As a result,  [c+\l]      is also diagonalized, and 

the filter vector B, obtained from Equation (6.50) and normalized to unit 

energy, will have exactly the same form as A (matched filter case), i.e., 

B* =   [0,0,...,0,1,0,-«',0] (6,79) 

v/here the nonzero element is again the M     element.   But with B so defined. 

"»rS'VVW <6'80) 

so that D and   [o+Al]      are also diagonalized.   The result, using (6.52) 

and normalizing to unit energy, is just the original signal vector described 

, 
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by (6.75).   This is then an optimal signal fordoppler resolution.   In fact, if 

none of the s 's are equal to one, then none of the y's or p.'s are equal to 

M.   It then follows that c..„ = d.... = 0, so that 
MM       MM 

SIR =A*[C4 Xl]"1 A(E /E ) =2E /N   , (6.81) 
s    c so 

which is the maximum possible SIR (i. e. , the signal-to-noise ratio for a 

matched signal-filter pair whose ambiguity function is orthogonal to clutter). 

Assuming E   = E   = 1, the maximum SIR is l/A.   In other words, the signal- 
s       c 

filter pair described by (6.75), (6. 77), and (6, 79) is a global optimum to the 

SIR maximization problem. 

Although the above solution is the best possible one, it will now be 

shown that the solution is not unique.   Consider the d.c. component of 

[(p   (t)] in Equation (6.69), i.e., the m = 0 component.   If this component 

is included in the set of basis functions, then one can choose an initial signal 

vector: 

A* = [l,0,0,-",0,0] (6.82) 

where the first component corresponds to m = 0.   Such a choice makes 

■ 

i. 
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Once again, [c + AIJ      is a diagonal matrix, so that B = A.   Then 

so that [D + XIJ       is diagonalized and A is regenerated.   For this case 

(with E   = E   =1): s        c 

SIR = A* [C + Xl]"1 A = 1/(X + p p  s )  <  l/X. (6. 85) 

Thus a second solution to the problem exists, namely a rectangular pulse. 

This solution gives a local maximum of the SIR but not a global one. * 

Because the tirst answer results in an absolute maximum of the SIR, 

it is evident that the signal-filter ambiguity function is orthogonal to the 

clutter pdf (and that the signal and filter functions are identical).   That is, 

the algorithm demonstrates the way in which the zeroes of the signal auto- 

ambiguity function can be made coincident with clutter points.   It would seem 

* The two special results derived here, i.e., a narrowband signal and a 
rectangular pulse, should be compared with equation (3.166) and the 
corollary to (3.81), respectively. 
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that the frequency fm, = M/T must be accurately implemented in order that 

the SIR actually assume its thoretical optimum.   Notice also that for a 

given value of M, the frequency may be made smaller by using a larger 

time duration.   Unfortunately, time duration is generally limited by the 

supposition that the echo not overlap the transmission.   (The system 

should avoid simultaneous transmission and reception so that the strong 

outgoing signal does not "swamp out" the comparatively weak echo.)  By 

the argument associated with (3.166), one sees that as f    becomes 

arbitrarily large, the resulting quasi-monochromatic signal can attain any 

prespecified doppler resolution capability.   This limiting solution is then 

less sensitive to an accurate frequency implementation, provided the 

frequency is so large that the ambiguity function has no support in s beyond 

a prespecified interval around s = 1.   In this sense, the solution is analo- 

gous to the perfect performance attained for the singular detection problem, 

wherein the problem formulation is not sufficiently realistic.   (Realism in 

this case would dictate a constraint on maximum signal frequency.) 

The above example accentuates certain characteristics of the 

iteration process for SIR maximization: 

1. The solution is dependent upon the basis functions from which 

it is constructed.   For clutter points very near the target in velocity, 

th 
the value of M could be exceedingly large.   The M    component might 
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then be omittod for practical reasons, thus forcing the procedure to 

find a less impressive but more tenable optimum signal-filter pair. 

Although M can be a large frequency, the frequencies required to 

realize the abrupt endpoint jumps for m = 0 are even larger.   To 

avoid such discontinuities (as well as ad.c. component) the d.c. 

term might also be left out of the basis, again forcing the procedure 

to a different result.   From these remarks one sees that many 

physical system constraints can be included in the optimization 

procedure by restricting the available choice of basis components. 

2. Solutions are not necessarily unique. 

3. The procedure is not only prejudiced by the choice of basis, 

but also by the initial (starting) vector. 

6.6       Computer Algorithm for General Solutions. 

To formulate the problem for computer solutions, the first step is 

to superpose a grid onto the (T,s) plane.   Samples of the clutter probability 

density function will be taken at each intersection of grid lines (hereafter 

called grid points).   The grid lines should be spaced at small enough intervals 

to allow a reasonably accurate reconstruction of both the clutter pdf and the 

ambiguity function from their sampled values at the grid points. 
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At each grid point (r.,s), the values of X   . (T   s ) and Y   .(T.,S.) 

are determined.   In reality only one of these quantities need be calculated, 

since by a change of variables 

b b 
rx ry 

Xmk(T's)= J     ^V^8"7^1"8  J     ^C8^1")]^1')^' 
a '      '"' a 
x y 

= sYkJn(T,s). (6.86) 

(The limits a  ,b ,a ,b   are given in conjunction with Equations 6.67 and 
x    x   y    y 

6.68.) 

Notice that X   .(T. ,s.)andY     (r.,s.) are not functions of the mk   i    j mk    i    j 

clutter pdf but depend only upon the basis functions and grid that are used 

for the problem.   The X.    's or Y     's should then be computed and stored, 

since they can be used with a wide variety of specific clutter distributions 

to find optimal signal-filter pairs. 

For a particular clutter pdf evaluated at the grid points as p(T ,s ), 

and a given starting vector A, one can now form the elements of the C 

matrix from (6.53): 

ci-=   X!  a   a*!    f f 8,P(T,,8.)Y   .(T1,s1)Y*.(T.,s.)dT.ds1 ki      ^-    m n )   J  J    j     i    j    mkv  1* j' njev i' J'     i   j m,n I-OB  Q 

(6.87) 

where the integrations are performed as summations over the grid points 

r. and s  (e.g. , by using Simpson's rule). 
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Notice that the integral in brackets in (6. 87) is independent of A. 

This means that it need only be calculated once and stored: 

oo  oo 

Fktnm=_/i[
8J«TrVYmk(T

i-V
YM(Tl'VdTidSi 

■ //•1/si)1><Tr8j'xi[m
(Ti-Vx».(Ti,si,dTidsi •    (6-88) 

-00       Q 

Then 

c.    « V   a   a* F, _   . (6.89) kjj     ^-     m n   kjpnn v        ' 
m.n 

Similarly, by (6.86): 

00      00 

/ /(1/Vp(Ti'Vxmk<Ti'V^VTi'VdTid8j 
—«      A 

//8jP<Ti'VYin(Ti'WTl'8J>dTid8J 
— CO    A 

F* mnkjt 

F      .. (6.90) nm|k v        ' 
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so that 

d    =   V b   b* F     .. (6.91) 
m,n 

Having found C, one can use standard computer subroutines to form 

the inverse of C+\I.   Then the filter vector B is found from (6.50).   After 

B is normalized to unit energy, D is calculated by using (6.91).   Again, 

[D + AIJ     is found and a new energy-normalized vector A is determined 

from (6. 5?\.   At this point one computes the SIR by using (6.57).   The 

procedure is then repeated. 

Succeeding values of the SIR are compared, and when the difference 

between them is less than a certain small number, then it is concluded 

that future iterations will result in very little further improvement; a 

locally optimum signal-filter pair has been found. 

Finally, it is desirable to have a measure, other than the SIR itself, 

as to how well the cross-ambiguity function of the best signal-filter pair 

is avoiding high-clutter regions on the T,a plane.   To this end, one can 

easily generate and print out samples of the ambiguity function taken at the 

grid points: 
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(2),-   - v        I/2 

Xvu(Ti'8j)=8J    /V(t)U*C8J(t+Ti):,dt 

1/2 
= T   B/   b   a* ftp   (t)(p*[s,(t+T.)ldt 

m,n 

-1/2 
L  b   a! s.       X  «<''.,8). (6.92) *"-     m n    1 mn    i    1 

m,n J J 

The flow charts corresponding to the above procedure are given in 

Appendix D.   Some specific results are given below. 

Note that all examples use the orthonormal components: 

1/2 
Pn(t) =(2/T)      Sin(n7rt/T), tt[0,T]  . (6.93) 

Real functions were chosen because complex basis functions will 

generally yield complex waveforms.   If these waveforms were modulating 

a high carrier frequency, one could justify an argument that the real parts 

of the waveforms are approximately the Hilbert transforms of the imaginary 

parts, and the real parts of the results would thus have meaning in terms of 

the Gabor complex representation.   But for truly wide-band signals there is 

no guarantee that the optimal waveforms will be Analytic.   There is then 

no justification for taking the real parts of the results and calling them the 

"answers".   This pitfall is easily avoided by using real basis functions. 
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Sines (instead of cosines) were chosen so that there would be no 

discontinuities at the endpoints of the interval [o.Tj,   These components 

are also optimally smooth in the sense that they minimize mean square 

bandwidth under an energy constraint [25,56]. 

6.7      Significance of the SIR Algorithm. 

The SIR algorithm may be considered an alternate approach to a 

classical problem of radar signal design.   Once one becomes convinced 

that the ambiguity function describes the capabilities of a radar/sonar 

system, it is natural to simply specify the ambiguity function that best 

suits one's needs.   But the designer is then faced with the questions: 

(1)  Is this idealized function that he has specified really an ambiguity 

function, and if so, (2) To what signal-filter pair does it correspond? 

Much recent research effort has been directed towards finding an answer 

to these questions for the narrow-band case [46,47,48].   The first question 

has also been answered for the wide-band case  (3.150). 

The SIR optimization procedure attempts to solve the same problem 

without the necessity of answering the above questions.   When the designer 

decides upon the ambiguity function he wants, he need only put a high 

clutter probability in those parts of the ambiguity plane where his ideal 
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function should be small. *   As already pointed out, system constraints are 

conveniently included by a realistic choice of basis functions.   Given the 

basis and the clutter, the algorithm systematically determines a locally 

optimum signal-filter pair.   If the corresponding ambiguity function is still 

far different from the one he needs, the designer may consider a different 

set of basis functions and a different time (or frequency) duration.   The 

properties of Chapter III should be of some help in making these choices. 

The SIR optimization solution has implications for two-way 

communication links as well as for radar.   Consider, for example, binary 

radio communication through (or reflected from) the ionosphere.   If two 

sets of basis functions are established such that one set is orthogonal to 

the other, then two orthogonal signal-filter pairs can be found such that 

each is optimally designed for transmission through a given channel.   The 

channel would be characterized by a certain probability density function of 

point reflectors in time and velocity; delays and velocity distortions would 

be measured relative to a predetermined transmission path.   If it is decided 

that transmission should occur along a specific ray traced from transmitter 

to receiver, then all other possible rays connecting the terminals are to be 

considered as sources of unwanted information; their associated delays and 

* Some examples of this procedure will be presented in Section 6.8. 
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doppler factors (relative to the desired transmission) would define the clutter 

distribution for the SIR algorithm. 

6.8      Specific Results. 

For a signal time limited to T = 0.1 second, five components of 

the form (6.93) were used.   The 10 x 10 grid sampled the ambiguity function 

at equal intervals between -0.025 < T s +0.025 and 0.90 s s < 1.10.   The 

clutter distributions were as follows: 

I. Uniform clutter on the tau axis to encourage range 

resolution. 

II. Uniform clutter on the s axis to encourage velocity 

resolution. 

III. Two-dimensional Gaussian clutter distribution with mean 

at the origin (0,1) to encourage volume clearance 

(ambiguity volume small near the origin). 

IV. Uniform clutter on tau and a axes to encourage combined 

range-velocity resolution. 

V. Uniform clutter in first and third quadrants to encourage 

a sharp ridge-shaped (razor blade) function near the 

origin. 
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The clutter distributions were designed to have almost all their 

volume within the grid area.   Since the grid area was only a small part of the 

ambiguity plane, this led to very large clutter amplitudes and generally un- 

impressive values of SIR (on the order of 1 for a maximum possible value 

of 10).   A notable exception occurred for clutter distribution V. 

Three sets of components were tried for each of the five clutter 

distributions given above.   In order to have reasonably small interpolation 

errors, the maximum v.Uue of n in Equation (6.93) was always less than 

20: 

a. n = 1,5,9,13,17 

b. n = 3,11,15,17,18 

c. n = 13,14,15,16,17 

For T = 0.1 second, the corresponding frequencies ;from 6.93) are 

f(n) = 5n; f(l) = 5 Hz, f(18)= 90 Hz. It should be remarked that the problem 

is invariant to a consistent time scaling.    The same results would apply 

for T = 1 msec, f(l) =0.5 kHz, f(18) = 9 kHz, and the 10 x 10 grid sampling 

-4 -4 over the area -2. 5 x 10     < T s   +2.5 x 10    , 0.90 «s s < 1.10.  (The grid 

width in the s-directlon is unchanged by virtue of Equation 3.101.)  The grid 

still covers a range parameter Interval equal to half the signal duration. 



191 

I 
I 
I 

The component sets a and c both consist of uniformly spaced 

frequencies with the same maximum frequency.   They were picked in order 

to test the effect of different bandwldths.   The component set b has a loga- 

3    2    10 rithmic spacing (2 ,2  ,2 ,2 ) between succeeding values of n. 

Results were found to be highly dependent upon the starting vector, 

as one would expect from the example in Section 6.5. 2.   Therefore at least 

two different starting vectors were tried for each combination of component 

set (a,b,c) and clutter distribution (I-V). 

Table 6.1 shows the best three SIR'S obtained for a given clutter 

distribution.   As already remarked, these results were obtained by trying 

at least two different starting vectors for each orthonormal basis and 

clutter pdf.   The results in the table then represent the three largest SIR'S 

out of at least six local maxima.   Also shown are some computed moments* 

of 'he Analytic signal associated with each optimum signal-filter pair.   The 

* All the quantities shown in Table 6.1 are defined in Chapter III or Appendix 
A except for Woodward's T function, T     [l,p. 117}: 

Tw s (I/^TOJ |U(w) |4da; = J | Ru(T)|2dT. 

The importance of this function is demonstrated by the proofs of the 
volume theorems in Chapter III. 
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figures referenced in the table depict the best signal and filter found for a 

given clutter distribution, as well as the associated cross-ambiguity 

(2) 
function magnitude, |x     (T,s) | , sampled at the grid points. 

From Table 6.1 and Figures 6.3, 6.9, 6.13 (and  6.15) it is noted 

that some of the locally optimum waveforms for situations la. Ilia, IVa 

(and to an extent, Va) are nearly identical.   The resulting waveforms 

resemble three pulses, one pulse at the center of the time interval and the 

other two at the ends.   Since the grid only covers a quarter of the possible 

tau-duration of the autocorrelation function, it is apparent that the end- 

pulses , which will produce large sidelobes on a more complete map of the 

ambiguity function, have no effect on the grid region.   So for range 

resolution, volume clearance, and combined range-velocity resolution, it 

is reasonable to concentrate signal energy near the endpoints of the interval 

(for the grid as defined above).   This effect is also seen (to a less extreme 

degree) in Figures 6.7 and 6.11. 

(1) 2 
The comparatively large values of a      and TJ   associated with 

clutter distribution II (velocity resolution) are in accord with the origin 

2 (1) properties of Chapter III.   Large values of 77   and a     imply a sharp peak 

of the ambiguity function at s = 1 on the T = 0 axis. 

2 
Relatively large values of X   associated with clutter distribution I 

(tau resolution) are also to be expected from second derivative properties 

at the origin. 

i 



I 213 

The choice of basis components was somewhat unfortunate in that, 

2 2 2 2 
for all situations, \   » 77 •   Therefore the A.   -term swamps out TJ 

considerations in the determination of average curvature at the origin. 

It was hoped that average curvature would be accentuated as an important 

parameter in both volume clearance (III) and combined range-velocity 

2 2 
resolution (IV).   But because \   > > 77  . the results are generally incon- 

clusive so far as curvature is concerned. 

Lincoln remarked that "this is a world of compensation".   If the 

2 2 component choice makes X   > > 77   > then perhaps there are situations for 

which such a choice is advantageous.   Clutter distribution V would appeal 

to be just such a case.   The two excellent SIR'S obtained for V are both 

2      (1) (2) 
characterized by comparatively small values of TJ  , or    , and a    . 

Indeed, the type of ambiguity function encouraged by distribution V would 

have the ridge or razor blade shape associated with the doppler tolerant 

bat-like signals derived in Chapter IV.   The waveforms of Chapter IV were 

2 
derived by minimizing r} .   It is to be expected, then, that basis components 

2 
which make 77   comparatively small a priori will foster the sort of waveform 

that gives large SIR'S for clutter of type V. 

Another strong basis dependence is observed for the tilt parameter, 

y.   In the only two situations for which component set c  gives a comparatively 

large SIR (clutter pdf n), the associated values of y are on the order of 
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half the values that appear in the rest of Table 6.1.   That the small value of 

y is associated with component set rather than clutter density becomes 

apparent when one considers the first case for clutter pdf II, where basis 

b is used and y is large. 

It would seem that SIR maximization with clutter distribution IT 

(velocity resolution) leads to unusually large carrier frequencies.   This 

correspondence may be explained in terms of the narrowband theory of 

Section 3.11;  such an explanation would require that the centralized band- 

2 
width X   be comparatively small (as well as w   large).   This requirement 

o 

is indeed satisfied, as shown in Table 6.1. 

Also associated with distribution II are exceptionally large values 

2 
of T    and D .   It is possible that these parameters are large by virtue of 

w t 

the standard uncertainty relation (Appendix C).   On the other hand, the signals 

are so non-Gaussian in character that there is probably considerable 

2   2 difference becween the product D, D     and its lower bound.   For the wave- 
t     O) 

forms under consideration, then, it does not necessarily follow that smaller 

2 
bandwidth implies larger timewidth.   The large values of T    and D 

associated with wideband velocity resolution therefore may imply a property 

(2) 
of |x     | that has yet to be derived.   A large required value of T    is 

especially interesting, since T    has been associated with range resolution w 
and volume reduction, for which it should generally be made small. 
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6.9       Clutter Suppression for Distributed Targets. 

If a distributed target's impulse response c(t) has been estimated 

(or is known a priori), it is possible to design a signal which provides a 

maximum response (of x    ) to the target echo while minimizing response 

to spurious point reflectors.   If r(t) is the received waveform, then it is 

here assumed that the processor forms the function 

lO0'1»^'6^2"   |/{JuWch(t-x)dx} r*(t)dt|2. (6.94) 

If r(t) =   j u(y)c. (t-y)dy, then the correlator response should be 

large.   But if r(t) = u(t), the echo from a spurious point target, then 

correlator output should be kept small.   Notice that the clutter is here 

considered to be coincident with the target in both range and velocity - an 

impossible problem for the point target SIR technique. 

If r(t) =   Ju(y)ch(t-y)dy, then 

lXIiu)(M'VC)|2=   IjTJviWc^t-xJdx] [/u(y)ch(t-y)dy]*dt[2 

=   iJuwCJW)!^ (x-y)dy]*dx|2. (6.95) 
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If r(t) = u(t), then 

Ixjju (0.1,ch,c)|2 = | jvHK) [Ju(y)ch(t-y)dy]*dx|2. (6.96) 

The unit energy signal that makes (6.95) large while constraining (6.96) to 

be zero can be found by using the constrained Schwarz inequality discussed 

in Section 6. 3. 3.   The solution is: 

u(t) =k [Ju(x)R   {t-x)dx-X  f u(x)c (t-x)dx] 
h 

= k j ru(x)[Rc (t-x)-Xc (t-x)Jdx| (6.97) 

where the multiplier X is found by substitution of (6.97) into (6.96) when 

(6.96) equals zero. 
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CHAPTER VII. 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

7.1       Summary of Results. 

The foregoing chapters have attempted to extend and generalize radar/ 

sonar signal design to the point where meaningful theoretical solutions can be 

obtained for many nonideal, but realistic, situations. 

The signal:   Using a simple constant velocity point target model, previous 

restrictions upon signal bandwidth and carrier frequency were removed by con- 

sidering the wideband ambiguity function.   If the signal has very short time 

duration, target trajectory during reflection can be approximated by a straight 

line.   But, by using trajectory diagrams and taking account of acceleration, it 

became possible to consider signals of comparatively long duration without the 

necessity of assuming constant velocities.   The set of admissible signals for 

accurate radar-sonar analysis was thus increased considerably, in both per- 

missible bandwidth and time duration. 

The target: Target motion was generalized to nonlinear trajectories. 

This was done by trajectory diagram construction techniques and by Kelly- 

Wishner theory. Very high velocities can also be dealt with. Finally, the 

point target idealization was generalized to distributed targets. This was done 

partly out of necessity, for it would appear that manv wideband signals are 

more sensitive to target configuration than their narrowband counterparts. 

Tt was found that, unlike point target reflections, the power and energy 

217 
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of distributed target echoes are dependent upon the transmitted signal.   Impli- 

cations of this finding for clutter discrimination were examined.   It was shown 

that a priori knowledge of general target shape, when available, can be very 

useful in the design of efficient radar-sonar systems. 

The environment:   For narrowband signals and point targets, waveform 

design for optimal signal to interference ratio in a cluttered environment has 

already become well established.   Here the procedure was generalized to 

include wideband signals and distributed targets.   Implications of the SIR 

algorithm for two-way wideband communication systems were briefly discussed. 

Results of special interest are the properties of the wideband point target 

ambiguity function (Chapter HI), the inscribed diamond construction technique 

for finding doppler tolerant (and, occasionally, distribution tolerant) waveforms 

(Chapters IV and V), the derivation of signals very similar to bat cruising pulses 

as optimally doppler (and acceleration) tolerant waveforms (Chapter IV and V), 

the distributed target ambiguity function and its maximization by signals that 

provide maximum returned energy (Chapter V), the derivation of waveforms 

for distribution tolerance and target description ability (Chapter V), and the 

SIR method of wideband waveform design for optimal resolution properties 

(Chapter VT). 

7.2       General Conclusions. 

When the narrowband assumption is discarded in favor of a more 

general approach to radar-sonar signal design, the existing theory is affected 
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in the following ways: 

1. A generalized point target ambiguity function must be 

defined. 

2. Targets which once could be represented as point reflectors 

must now be considered to be distributed in range and velocity. 

A corresponding ambiguity function must be defined. 

3. Narrowband algorithms for clutter suppression must be 

revamped for wideband analysis . 

4. Trajectory diagrams, which do not depend upon bandwidth 

assumptions, remain applicable. 

In this dissertation, contributions have been made to each of the four 

basic ideas given above.   Undoubtedly, further analytical refinements await 

discovery, making the ideas (and their associated methods) even more potent. 

The advances that have been made, however, render the four approaches 

(point target wideband ambiguity function, distributed target ambiguity function, 

clutter suppression algorithm, and trajectory diagram) applicable to many 

practical problems. 

Whenever the methods overlap, i.e., whenever more than one approach 

mn be applied to the same problem, significant insight has been acquired. 

The doppler tolerance problem, for example, allowed straightforward appli- 

cation of the point target wideband ambiguity function, the trajectory diagram, 

and, to a lesser exten' , the clutter suppression algorithm.   Each of the metLods 

provided insight into the others; the result of each method was consistent with 
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that of the others.   Finally, the less obvious (but important) relevance of the 

doppler tolerance property to the distributed target ambiguity function was 

revealed. 

A similar overlapping of methods with consequent gain in understanding 

occurred for the distribution tolerance problem. 

The generalized signal design methods were found to reinforce and 

interpret each other 's conclusions, but the final evidence for the utility of a 

given result often came from nature, in the form of bat signals.   Waveform 

synthesis techniques may thus be used to enhance man's understanding of animal 

echolocation.   Conversely, a knowledge of animal sonar transmissions (and the 

conditions under which they are used) can shed new light on theoretical methods 

and results.   A fifth approach (of some historical interest [ 57 ] ) to wideband 

signal design is thus the study and interpretation of animal sonar signals.* 

7.3       Suggestions for Further Study. 

There are many opportunities for further study implicit in this disser- 

tation.   Among them: 

1. Application of the integral transformation between wideband 

and narrowband ambiguity functions.   A great deal is already 

known about the narrowband ambiguity function.   All this 

*   "... in problems of analysis the best method is that which sets out from the 
results and arrives at the premises." - Bertrand Russell [60] . 
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information should now (theoretically) be available to wideband 

designers by virtue of the integral transformation in Chapter 

III.   A good start would be a cheap computer algorithm to 

realize the transformation. 

2. The theoretical derivation of more animal echolocation signals. 

Porpoises, seals, and penguins are possibilities.   More experi- 

mental data should be converted into the type of pictures taken 

by J. J. G. McCue and D. A. Cahlander [22 J ; such beautifully 

encapsulated representations of animal signals are quite rare, 

as far as the author can tell.   The widespread practice of 

representing animal sounds via sonagrams may be useful for 

some applications, but without the more exact plots of period 

and amplitude versus time, the author might not have realized 

that some bats use doppler tolerant waveforms. 

3. Extension of the SIR algorithm to many grid points and many 

orthonormal components via the fast Fourier transform. 

Also needed is a procedure for picking an optimal starting 

vector to avoid unnecessary iterations and to arrive at a 

globally maximum SIR.   At the very least, one should have 

a measure of distance between starting vectors from the view- 

point of the algorithm, so that significantly different starting 

vectors can be tried in attempts to find the best signal-filter 

pair.   Also needed is a measure of the sensitivity of the SIR 
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to the slight imperfections that will result when a system is 

actually built. 

4. Application of wideband radar theory to two-way communication 

links.   The SIR algorithm, particularly, seems to be a viable 

method of signal-filter design for two-way multipath channels. 

An interesting representation of a multipath channel would consist 

of a stochastically time varying distributed target whose changing 

interference patterns result in the well-known fading phenomenon. 

5. There is a whole class of optimization problems to be solved in 

connection with high resolution.   One should maximize average 

2    2 
curvature at the origin or  TJ   X   product of the wideband ambi- 

guity function.   It is important to find meaningful constraints 

2 
for this problem, such as the D   constraint in the doppler 

tolerance discussion.   The SIR results suggest   that T    is an 

important parameter for both range and velocity resolution. 

Pulse-train results would be highly relevant. 

6. The implications of the narrowtime signal property discussed 

in Chapter HI should be further investigated.   Mathematically, 

the property suggests a dependence upon time origin, a suspicious 

implication from a physical standpoint.   (As evidenced by 

Equation (3.127), the narrowband ambiguity function is unaffected 

by a shift of time origin.) 
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7. The significance of unmatched signal-filter pairs. 

Let v(t) = u(t) - 77 (t), where u(t) is the optimal signal and v(t) 

the optimal filter of an SIR maximization procedure.   Correlating 

1/2 
both sides with s       u [8(t + T ) ] gives 

X(2)(T,s)= X
(2)

(T,S) - x(2) (T.S)   . (7.1) A VU UU *ff\l 

/O v /O 

Conjecture:   TJ (t) is such that   x      (7.s) makes   x,  ' ir , &) 

small over those regions where | x     (T . s) |  cannot be small. 

(2) 
For a specific set of oasis vectors, a study of x      (T . s ) for 

various T/(t) 's and clutter distributions may therefore reveal 

(2) 
pairs of points (T , s ), (T     s ) such that  x     (Ti • si) an<1 

(2) 
X     (T9 . s9) cannot simultaneously be made small.   This con- 

cept, if sufficiently generalized, could lead to a wideband version 

of Woodward's narrowband volume invariance.   That is, one 

could have reciprocal areas on the ambiguity plane such that, 

if the ambiguity height over one given area is small, then the 

height over another area must be large; "pushing down" the 

ambiguity function in one particular place may result in its 

"popping up" somewhere else.   From the SIR results (especially 

for clutter distribution V, Section 6.8) one may conject that 

such reciprocal areas (if they exist) are frequently to be found 

in adjacent quadrants of the (T , s) plane. 
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8. New correlator implementations. 

a.       The Oppenheim filter 

For s=l, equation (5.40) may be written: 

R *      * (T) =R    (T)*R    (T) . (7.2) 
u*v,u*v uu vv 

Another property of the autocorrelation function R    (T) is that 

if c is a scalar constant, then 

cu(ct)=- CRUU(CT) (7.3) 

since 

j c u(ct) c u* [ c (t + T ) ] dt = c R    (c T )   . 

Equation (7.2  may be written in the more general form. 

<p [u(t) o v(t) ] - « Cu(t) ] O 0 Cv(t) ] (7.4) 

where the transformation  0  corresponds to autocorrelation and 

the operation "o" is convolution. 

If the transformation c u(ct) is described by the symbol ":" , 

i.e., 

c:u(t) = cu(ct) (7.5) 

then by (7.3), 

<t> Cc:u(t)] = c:0 [u(t)]    . (7.6) 
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A. V. Oppenheim has pointed out that if the general equations 

(7.4) and (7.6) hold true, then the operation  <p  may be inter- 

preted as an algebraically linear transformation between vector 

spaces [58] .   The autocorrelation transtormatiou is tncn a 

form of generalized linear filtering (as one would suspect from 

its matched-filter implementation).   But according to Oppenheim, 

a transformation   6  that satisfies (7.4) and (7.fi) ran hr imple- 

mented as a cascade of three systems (see [58] for details). 

This idea suggests the possibility that a new type of correlation 

receiver can be built.   The implementation should be studied 

in detail. 

b.       Phase-locked oscillator for simulation of the doppler effect. 

If a matched filter receiver is not used, one must simulate 

hypothetical (time-scaled) versions of the received signal for 

correlation processing.   There are two well known methods for 

time scaling a waveform:   (1) A time delay that varies linearly 

with time (as suggested by the trajectory diagram, which is a 

representation of the effects of a time variable delay) and (2) 

optical systems which translate time to spatial coordinates (as 

conceived in Section 4.2 of this dissertation or by Papoulis [36] , 

p. 203 etseq). 

I 
I 
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A third process for synthesizing doppler compressed 

versions of a transmitted waveform is particularly applicable 

to the two signal types discussed in Chapter V (Table 5.1).   This 

method multiplies or divides instantaneous frequency by using a 

phase-locked loop (Figure 7.1). 

INPUT 

PHASE 
ERROR 

-!- 

SENSOR 
VOLTAGE 
CONTROLLED 
OSCILLATOR 

 ^©—^ • 
• 

OUTPUT 

i 
I 
I 

Figure 7.1.   Phase-Locked Loop. 

For an instantaneous period that varies in any of the ways 

shown in Figure 7, 2, frequency multiplication (or division) using 

the phase-locked oscillator (or just a frequency divider) will 

produce an output signal that correlates strongly with a doppler 

scaled version of the original (constant amplitude) waveform. 
T (t) 

(a) 

(b) 

(c) 

(e) 

(*w 

"^V       (h) 

/a, 

Figure 7.2.   Instantaneous Period Modulations for 
Detection with Phase-Locked Loop. 
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It remains to be seen whether the phase-locked loop process can 

be applied to the time scaling of a more general class oi signals. 

9. Clutter as distributed target: 

It was remarked in Chapter VI that the uncorrelated-point- 

target model of clutter may be somewhat unrealistic.   It would 

seem to this author that for some situations one inipht do well 

to model clutter as a distributed target with some stochastic 

parameters.   The surface of the sea on a windy day, for example, 

may be regarded as a random distribution of moving uncorrelated 

point scatterers.   But the eye is quick to pick out a pattern of 

waves and troughs moving in a comparatively non-random fashion. 

Hence the ocean surface may sometimes be viewed as a moving 

distributed target (or, rather, clutter).   Such a thought should 

no longer seem analytically intractable in view of the ideas of 

Chapter V. 

A given environment might then consist of some determin- 

istic distributed clutter configurations, combined \uth a group 

of uncorrelated point targets.   The problem is still the same: 

Maximize the response of the receiver to the target echo while 

keeping the response to clutter and noise as small as possible. 
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In this situation it is possible to eliminate some of the 

clutter response before it ever reaches the correlator.   This 

is because the clutter-as-distributed-target gives rise to an 

echo whose possible components are known a priori. 

If q (t) are the impulse responses of the various possible 

deterministic distributed clutter arrays present in an environ- 

ment, then the ncho from the target's surroundings is partially 

given as 

rq(t) = E ^ ^ / u(x) q^t-x^ (6.94) 

where a. is a function of the relative strength or cross -section 

of each environmental component,   p. is a likelihood factor 

(E p. = 1) indicating the existence of a priori knowledge concern- 
i    1 

ing the probability that a given q  is really present,   (Tn sonwr, 

for example, a strong, constant wind at k knots might over- 

whelmingly favor the clutter configuration with impulse response 

q. (t)). For radar, the time of day correlates with some iono- 

spheric effects in a known fashion.   Such factors would then be 

used to determine the a priori probabilities of the different 

possible deterministic components of clutter response.) 

The basic idea is to set up a predetector which is much 

the same as a standard M-ary detection scheme [2].   This 



229 
i 

predetector would test for the presence and strength of various 

possible clutter distributions.   Having detected the presence 

and estimated the strength of the clutter distributiua», tnc 

detector would then generate a signal composed of these same 

distribution responses, weighted according to their strengths. 

This signal would be subtracted from the (delayed) incoming 

signal.   The result should approximate ibt .ar^ei respunBU (U 

present) added to white noise and the response trom uncorrelated 

point targets.   The SIR algorithm would then be used to design 

an appropriate correlating filter.   A diagram of this scheme 

is shown in Figure 7.3. 

In Figure 7. 3, the input is correlated with possible 

clutter returns via matched filtering through systems wan 

impulse responses r.(-t).   After squaring, threshold detectors 

indicate whether a particular r (t) is indeed present.   (As in 

ordinary M-ary detection, the i    threshold is a function of p., 

the a priori probability of receiving r (t).)  Once it is decided 

that a clutter return is present, its strength is indicted by how 

much it exceeds the threshold.   A pulse of the proper strength is 

I then generated, and this pulse causes an output r.(t) from another 

I 
I 
! 

linear filter.   The sum of the clutter returns  E r,(t) is then 
i   l 

subtracted from the delayed input.   The resulting signal is, 

ideally , free of all Interference save that of uncorrelated noise 
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and uncorrelated point target clutter.   The final matched filter 

v(t) is designed to maximize the conventionally defined SIR. 

It is interesting to compare Figure 7.3 with a detector 

that discriminates against colored noise, illuctrated in Figure 

4.39 of Van Trees • book [2 ] . 

10.       Optimal control formulation. 

The Rhinolophus signals discussed in Section 5. 7 have 

some interesting implications for radar-sonar system design. 

Suppose that two or more different signals are transmitted in 

tandem, one immediately following the other, and that the pro- 

cessor consists of matched filters for each of the transmitted 

signals.   For a given total energy (and time duration) the energy 

weighting (or time sharing) of each signal will be dictateH by a 

cost function which seeks to optimize the acquisition of certain 

information.   The problem can thus be formulated in tvrn .=: of 

optimal control theory.   Indeed, a frequent result of optimal 

control theory is the "bang-bang" solution, which in this case 

would cause all the energy (or transmission time) to be given 

to one waveform.   In other words, the bang-bang solution i? the 

usual transmission of a single waveform.   However, other more 

uniform energy (or time) weightings may be optimal under certain 

conditions. 
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11.       An immediate application of distribution describing signals. 

The theory of Chapter V would seem to be of some use for 

the ultrasonic identification of objects by blind people.   A device 

that uses ultrasonic sonar transmissions to aid the blind in 

already in existence [ 61]  .   L. Kay, inventor of the device 

(which he calls "ultrasonic spectacles"), made the following 

statement in i9tt6: 

"The step which has yet to be taken to produce the true 

ultrasonic localization may be technically difficult, but the result 

is not so difficult to visualize.. .Each object should appear to 

make characteristic sounds which can be recognized.   Since it 

will be unlikely for two objects to produce exactly the sflme 

sound at any one time, the observer should then be able to dis- 

tinguish one from the other and therefore appreciate their relative 

positions.   In a cluttered environment it is still difficult to accept 

the possibility of being able to appreciate sufficient detail from 

which to reconstruct the spatial pattern.   The behavior of the bat 

suggests that it can do this using a similar sensing process.   It 

must, for example, require more than simple object detection 

when catching insects among foliage. " r62n 

I 

I 
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APPENDIX A. 

ORIGIN PROPERTIES 

i     (2) i Consider a two-dimensional Taylor series expansion of | \   _   (T,s) | 

around the point s = 1, T = 0: 

«»V..,!'-!,»,...,!-. [■^ + a 
0,1 ■■> ^ I   1 

0,1 -I 

+ 1/2 
>2I        I2 

&Tj)S 

0.1 0,1 

+ (s.1)2 ^iixJl 
bs ] 

0.1 

+ higher order terms (A-l) 

With     f   u(t)u*(t)dt s 1 and x ^ defined as in (2.8), one has 

i     (2) i 2 
l*uu<M)l  =land 

br =   j u(t)u* •(t)dt + j u*(t)u'(t)dt   . (A-2) 

0,1 

240 



241 

In this and subsequent equations, unspecified limits of integration are taken 

as (-«,0»).   Primes denote differentiation of a function with respect to its 

argument.   Assuming |u(t)j' = 0 and integrating by parts: 

i   (2),2 
'^uu | 

0,1 

(A-3) 

IM: 
&s 

0,1 
1/ - 1 + 2Re   |l ^(^♦'(^dt [ . 

Assuming t |u(t)! = 0 and integrating by parts: 

äs 
= 0. 

0,1 
(A-4) 

2.    ,2 
^ Ixl 
ST 

= 2 Re j ^(^♦"(^dt (   +2|   fu(t)u*'(t)dt| 

0,1 

Assuming that u* 'u 0 and integrating the first term by parts: 

i 
I 
I 

2,     .2 a Ixl 

dT 
-2   J|u'(t)|2dt- | fnm*'(t)dt (A-5a) 

0,1 
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By invoking Parseval's theorem, this equation may be rewritten in terms of 

U(u!), the Fourier transform of u(t): 

är
2 

= -2 

0,1 

(l/27r)  ruJ2|U(a;)|2du; -    (1/2;,) Jw |U(UJ) |2daj 

(A-5b) 

Making th« definitions: 

/2 2 2 
UJ  |U(^)j  dw = D     = mean square bandwidth [10] 

/2 
a}|U(a})|  dw = a;   = carrier frequency [11,12] 

(A~3b) becomes 

2.    .2 
= -2 ID

2
- üj2y (A-5c) 

I   w       o l 

0.1 

Notice that the definition of carrier frequency only makes sense for 

analytic signals.   If u(t) were considered to be strictly real, it would follow 

that U(aj) -- U*(-ü;), and w   would be zero by definition.   On the other .^and, 

if u(t) is complex and if the real and imaginary parts of u(t) are Hubert Irons- 

forms of each other, then lllui) = 0 for w < 0 [10,11] and u   is the rentroid 

of the resulting one-sided spectrum.   It is therefore assumed that 

u(t)    a(t)exp[je(t)], where 
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i 
i 

I 

a(t) cos e(t) = H [a(t) sin B(t) ] , (A-6) 

the H denoting Hubert transformation. 

Returning to the evaluation of derivatives, 

2,    ,2 

.s
2 

= 4 Re lftu(t)u*'(t)dt(  + 2 Rej rt2u(t)u*/,(t)dt[ 

0,1 

+ 2| Jtu^u+'^dtl2    . 

It has already been established (in connection with equation 3. 8) that 

2 Re j j tu(t)u* ' (t)dt [    = -1/2.   Assuming that t u(t)u* ' (t) 

ing by parts gives 

= 0 and integrat- 

Re jjt2u(t)u*"(t)dtj     =1-   /  t2|u  (t)|! dt 

Therefore 

2i    .2 $   IM 
2 5s 

= -2Jj't2|u'(t)|2dt- | J tui^u+^tldtl2     •        <A-7a) 

0,1 
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Again using ParsevaTs theorem: 

2,    .2 

2 
ds" 

= -2 j (l/27r) j w2 lU^O)) (2du3 -  |(l/27r) f wU(w)U*'(ü))dw|' 

0,1 
(A-7b) 

RnaUy, 

^iixji 
asar = 2 Re j j tu(t)u*"(t)clt [  + 2 Re) ju^u'l^dt-j tu(t)u*'(t)dt 

0,1 

Integrating the first term by parts gives: 

2,    ,2 

dsar = -2 I jtlu^t)!  dt-Re j Ju'^u^^dt rtu(t)u*'(t>dt!    . 

0,1 

(A-Ha) 

Using Parseval's theorem: 

£JXJ! 
dSdT 

0,1 

-2   Im j (l/27r)  f w U(W)lJ*(W)dw(-a/27r)Jw|U(cj) j2du; 

• Im j(l/2ir)r«U'(w)U*(w)dw( . (A-8b) 

It can bo shown that exactly the same derivatives are obtained for X^   (T,S). 
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APPENDIX B. 

AN INEQUALITY Of B,v.SZ.-NAGY [16,17] 

Lei y(t) be a function defined over (-00,0»), for which the integrals 

J 

00 00 

J|y|adt.   Kp=     |"||y(t)|Pdt (B-l) 

exist for bume a > 0 and some p ^ 1.     Then 

maXlyl       5(r/2)1/r J (p-1)/pr K 1/Pr (B-2) 
-« < t < 00 ' a p 

where r = 1 + a(p-l)/p;  further, for b > 0, 

Wl5H^TnbV<^<'- [f««-2?)] 
where 

-(u+v) 
H(u,v) = -^ fv

<1"Kl+V)   , H(u,0) = H(0,v) - 1. (B-4) 
u   rci+u) v  r(i^v) 

The inequalities are provon by using Holder's inequality. 

The relation (B-2) becomes an equality when y(t) = cy    ( |dt + e |), 

whor«1 c,d,e are arbitrary constants (d* 0) and 
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!(l-t)p'(P"^    for 0 < t s 1 

0 for t > 1 

for a = p:    y    (t) = e~    for t 2 0 (B-5) 

for a >p:   y    (t) = (l-t)P (P~a)   for t 2 0. 
pa 

The relation (B-3) is an equality when p > 1 and y(t) = cy    . (|dt + e |) where 

y     (t) = u is defined by the equation (for t i 0): 

1 

i[ a (1-s )J 

y   , is monotone decreasing with time.   For a ^ p it is always positive; 
pab 

for a < p, y   . (t) = 0 for t > t , where 
pab o 

1 

vf—^T; • (B-7) 0
J     fa      bll/p 

0     [8 (1-8 )J 

Sz. -Nagy has given an example:    a=b = l,p=2.   In this case he claims that 

r f 0 

2    , 
cos (t/2)     for 0 s t s TT 

hnV'L ,   , • (B-8) 
for t > TT 
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The values of t are seen to satisfy (B-7).   To satisfy (B-6), the function must 

be the solution of the differential equation: 

du      fa       bl1/p    . - —[u(l-uD)J (B-9) 

2 
For a-b-l,p = 2, one sees that cos (t/2) is indeed a solution of (B-9) 

A case of interest to this dissertation is     a ~ b = D - 2,    For this 

case (B-9) becomes: 

21/2 

u' = -u(l-u )       . (B-10) 

A solution of (B-10) is: 

u(t) = Sech t . (B-l 1) 

Since a -p, this function yields equality in (B-3) for all t s 0.   Also, since p 

is an even number and Secht is even in t, J   ., J , and K   are all even in t, 
a+b    a p 

so if equality in (B-3) holds for 0 £ t < » , it must hold for -« < t ^ 0, i. e., 

for all t.   Hence, the hyperbolic secant function for -«o<t<»orta0 (and 

any scaled or translated version thereof) makes (B-3) an equality if a = b -- p - 2. 

The Sech function, incidentally, has another interesting property.  Like the 

Gaussian, it is an eigenfunction of the Fourier transform. 
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APPENDIX C. 

THE ALPHA MOMENT 

It would appear that the moment 

c/1* «  /t2|u'(t)|2dt«(l/2ir)   jw |U'(w)|2d(o (C-l) 

lä of some importance as a signal parameter in tbe design 01 «viueoand wave- 

forms for radar and sonar (Chapter III).   E. L. Titlebaum has thus investi- 

gated some of this moment's properties.   Having found these properties, 

Titlebaum realized that they were the same as those of time-bandwidth 

product.   That is, the alpha moment has the same characteristics as the 

2     2 
IJ    D    product used to express the standard uncertainty principle for a func- 

tion and its Fourier transform.   One might have expected such a result because 

of the two different ways of writing the Schwarz inequality for the moment: 

j tu(t)u*'(t)dt - (l/27r) J a;U/(a;)U*(w)da) . (C-2) 

That is, 

|(l/27r) /* wU*(a;m'(uj)da;| 
2 

(l/2i(\ f (J)
2
\V' fd<a'(l/2it) f   IU|  dw 

(l/27r) j" a;2|ü|2dw.(l/27r) J    |u'|2dcü 
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or, for unit energy signals, 

(1) la 
\ u 

|(l/2r) /u)U*{w)U/(ü;)dü3|     s    { . (C-3) 

ID    D. 
i   a)   t 

'i u(t) --a(t)ejM ', then 

j tu(t)u*'(t) dt =   j ta^a' (t) dt - j j t0 ' (t)a2(t) dt 

vhnre   jtaaMt = - jtaa'dt - 1, or     jtaa'dt = -1/2, 

so  hat Jie left side of (C-3) becomes 

/o r r 2        T2 

wU*(a;)U/(w)dü)(- =1/1 +  I Jte^Ma (i)dt |     . (C-4) 

t,   ij.   ii'Jeüaii'n's results are as follows: 

If u(t) has unit energy, and a(n) - J t2" |u(n)(t)l 2 dt, iiien 

1.       ^.(n-l/rfa^-V*!/*. 

in) 
2 ./ ' has time-frequ^n^v pymmetn': 

/t211 |u(nV)| 'dt = (1/2.) jJn lu(n)(W)l 'dc   . 
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3.       a^ ' is invariant under the transformation u(t)-^ s      u(st). 

The properties for a   ' follow trivially from (C-l) to (C-4).   But the generalized 

properties for a     are more difficult to derive.  As already mentioned, these 

2   2 
properties also apply to the time-bandwidth product D   D. . 

OJ   t 

The ji   ' moment is also indicative of narrowtii^eaoüs JJJ . M row- 
u 

!>öiidedneö3 (the implicationä of which are Ctiscussod in Chapter VS).   Defining 

y(t)=tu(t), (C-5) 

one finds that 

J2S    /|y|2dt = Dt
2 (C-6) 

t>r\r\ 

K2* /lyfdt-«^ (C-7) 

•o that Sz. -Nsgy's inequality gives: 

14 [max ItuCt)!] 

Dt 

similarly, if y(a;) = uiü((a)/(2*r  , (C-9) 

then      J . = D 
2        u 

K2 - a™ (C-ll) 
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and Sz.-Magy's inequality gives: 

[max |wU(w)n 

« .o v2 ^2 * (C l2) 

(2ir)   Dw 

The quantities on the right-hand sides of (C-8) and (C-12) are indicative of 

narrowtimeness and narrowbandedness, respectively.   To dpmonstrate this, 

one can assume a band limited signal with support only on the interval 

O -W/2, w +W/2], for which 

D^ = (l/27r) Ju2 |U(W)| 2dü) i (1/2») ["JJ1   |wU(a))| ]   W 

fmax |cüU(w)n 
or       ■■         * 

D2 

2 

i   2ir/W. (C-13) 

[max |CüU(W)|T 

ThU8    "^  2    b'2,W       *- 

But by the Schwarz inequality, 

^o   E    ff1/2*)   f w|U(ü>)|2dwJ 

i (l/2ir)  f w2|U(w)|2dw.(l/2ff) J |U(w)|2dw 

i (l/27r)  [^ |«U(w)i]   W (C-15) 
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or 
[max |wU(w)|l2        ru -i2 

a(l)   a   iü2 J_   ^ L» 
au     * 2jrW * LwJ 

(C-16) 

For a time-limited signal with support only on the interval [t -T/2, t +T/2] , 

the same sort of argument shows that 

If a signal has large carrier-to-bandwidth ratio (narrowband) or large mean- 

time-to-time-duration ratio (narrowtime), then a       must be large.   A large 

a     is thus a necessary condition for a signal to be narrowbanded or narrow 

in time. 
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APPENDIX D. 

PLOW CHARTS FOR THE SIR MAXIMIZATION ALGORITHM 

1. Generation and Storage of X  .(T.s). mk 

Having defined the grid points  T ,s and the orthonormal components 

(P (t), one wishes to generate and store all possible inner products at each 
n 

grid point: 

min{T,s(T + r)} 

j <(t) (P, Xm^Ti'V= <^V^S,)-Tl]dt 

max {0,8T } 

= XX(I,J,M,K) . (D-l) 

In all cases considered here, 

<p (t) =(2/T)1/^sin(n7rt/T)   . (D-2) 

For a large number of grid points and/or components, the XX(I,J,M,K) are 

best generated via the fast Fourier transform.   But since the examples here 

are meant merely as simple prototypes, the problem was restricted to only 

five basis components and a hundred grid points.   The routine consists of 

2!>00 integrations (25 possible inner products between the five components at 

each of 100 grid points).   The results were stored on 250 cards, to be used in 

the main SIR optimization program with different clutter distributions.   The 

approximate cost of this part of the routine was $9.00. 
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2. Main SIR Routine. 

Flow Chart: 

Initial SIR = 0.0,    Lambda = 0.1 

Generate initial signal vector A 

I 
Define the grid points tau(I) and 8(J) 

Define the clutter distribution 

Read and store X   .(T.,s ) = XX(I,J,M,K) 

I 
Calculate F^^ = F(K,L,M,N) 

I 
Construct the C-matrix ■ C(K,L) 

1 zz 
.-1 

Find[C+\I]     andB(I) 

1 
Normalize B(I) to unit energy 

Find SIR and compare with previous SIR 

Is new SIR s> old SIR? 

E 
-NO » 

YES 

Terminate program 
(safety valve)  

Is (new SIR - old SIR) g . 005? 

NO 

Construct D-matrix | 
i 

-YES 

Print out A,B,SIR, time 
signal", ambiguity 
function 

.-1 Find [D* XI]     and A(I) 

1 
Normalize A(I) to unit energy 
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In order to graphically display the time signals, the program used 

line printer routine TWOPL, written by Dr. H. Voelcker, Electrical 

Engineering Department, University of Rochester.   Other borrowed sub- 

routines were MATEQ and SIMP, University of Rochester library programs 

adapted from IBM subroutines for matrix inversion and integration. 

Approximate cost for each clutter distribution:    $2.00. 

3. Generation of the Analytic Signal's Moments. 

Flow Chart: 

Read the five optimal component coefficients, A(I) 

I 
Generate the corresponding time function over a one- 
second interval (time function = 0 for t > 0.1 sec) 

1 
Use a fast Fourier transform to find the Fourier 
series coefficients of the repeated one-second signal 

I 
Double all positive frequency components and assume 
that the negative frequency components do not exist 

I 
Normalize energy 

i 
T'ke moments as required by Table 6.1 

The FFT routine was written by A. Requicha, a graduate student in the 

Electrical Engineering Department, University of Rochester.   It is based on 

an algorithm by Cooley, et al [59].   Advice on the fine points of the FFT was 

obtained from L. R. Morris.   Approximate cost:  $0.65. 
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